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Agapov S. V., Shubin V. V. 1

Integrable geodesic flows with rational first integrals

S.V. Agapov1,2, V.V. Shubin3

1Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia;
2Novosibirsk State University, Novosibirsk, Russia; agapov.sergey.v@gmail.com

3Luxoft d.o.o Beograd, Belgrade, Serbia; vlad.v.shubin@gmail.com

We study integrable geodesic flows on 2-surfaces. In most known examples, the additional
integrals are polynomial in momenta. Polynomial integrals of small degrees are well-studied and
classified in both local and global aspect of the problem.

On the other hand, as proved in [1], there exist local Riemannian metrics on 2-surfaces with
integrable geodesic flows such that additional integrals are rational in momenta with any given
degrees of a numerator and a denominator. However, constructing such examples in an explicit
form turned out to be a very difficult problem. In this talk we will describe various methods and
approaches which allowed us to construct rich families of 2-dimensional Riemannian metrics with
integrable geodesic flows admitting additional rational first integrals (see [2], [3]).
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Collision of shock waves in plasma medium: An analytical study

Sherin Agnus1, Rajeswari Seshadri2

Department of Mathematics, Pondicherry University, Kalapet 605014, India;
1agnus.1112@pondiuni.ac.in, 2seshadrirajeswari@pondiuni.ac.in

The collision of shock waves in plasma medium is modeled as a coupled Ramani equation.
In this paper, we investigate the coupled Ramani equation using two main analytical techniques,
namely Lie symmetry analysis and the singular manifold method. The application of Lie group
analysis to the governing equation yields four-dimensional Lie algebra. Then we construct an one-
dimensional optimal system of subalegbras to study the classification of group-invariant solutions.
The similarity reduction for each symmetry in the optimal system transforms the coupled Ramani
equation into a system of ordinary differential equations (ODEs). This includes certain directly
solvable ODEs and a traveling-wave reduction. For one of the symmetry-reduced ODEs that cannot
be solved directly, the singular manifold method which is a truncated expansion analysis is used
to investigate the solution and examine the underlying properties.

Sherin Agnus gratefully acknowledge financial support by UGC (India), SRF, Award No:
1082/(CSIR-UGCNETJUNE2019).
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equation and its related system, Applied Mathematics Letters, 13(6), 45-48 (2000).

4. Weiss, J., Tabor, M., and Carnevale, G., The Painlevé property for partial differential equations, Journal
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Symmetries and exact solutions of a Non-standard Diffusion SIR
Models

Maryam Ahmadpoortorkamani1, Alexei Cheviakov 2

1Department of Mathematics and Statistics, University of Saskatchewan, Canada;
1qzm279@usask.ca, 2shevyakov@math.usask.ca

A novel Susceptible-Infected-Recovered (SIR) epidemiological partial differential equation (PDE)
system developed by Vaziry, Kolokolnikov, and Kevrekidis (Royal Society Open Science, 9(10),
220064, 2022) involves a nonstandard spatial diffusion term that models infection spread through
commuting infected individuals. We present a symmetry classification of the PDE family and cal-
culate some ordinary differential equation (ODE) or ODE system reductions. Resulting self-similar
solutions are computed by a combination of analytical and numerical techniques. These solutions
satisfy a simple boundary value problem and model an incoming infection wave.
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A novel approximate analytical approach for the delay differential
equations with fractional Caputo-Fabrizio derivative and application

to economic models

S. Moyo1,3, M.O. Aibinu2,3

1Department of Applied Mathematics and School for Data Science and Computational
Thinking, Stellenbosch University, South Africa; smoyo@sun.ac.za

2Institute for Systems Science, Durban University of Technology, Durban 4000, South
Africa; moaibinu@yahoo.com

3National Institute for Theoretical and Computational Sciences (NITheCS), South
Africa;

Fractional differential equations are indispensable in the modelling of several physical problems
with precision. Situations often arise that show discrepancy between the experimental results and
what is obtained as the results from the models that are given by the differential equations with
integer-order. Therefore, fractional differential equations have attracted attention as a powerful
tool in the modelling of physical phenomena with precision. Efforts on the solutions of fractional
differential equations is a vast research area. This study considers using an approximate analytical
approach, which is a hybrid of Sumudu transform for solving differential equations with Caputo-
Fabrizio derivative and time delay. Furthermore, the study considers introducing the Caputo-
Fabrizio derivative and time delay into an economic model and examines using a hybrid of Sumudu
transform to obtain its solution.

REFERENCES

1. Jaiswal S., Das S., G𝑜mez-Aguilar J. F., A new approach to solve the fractional order linear/non-
linear two-dimensional partial differential equation using Legendre collocation technique, Few-Body Syst.
2022;63:56.

2. Tavares D., Almeida R., Torres D. F.M., Caputo derivatives of fractional variable order: Numerical
approximations, Commun Nonlinear Sci Numer Simul. 2016; 35: 69-87.

3. Aibinu M.O., Moyo S., Solutions of fractional differential equations by using a blend of variational
iteration method with Sumudu transform and application to price adjustment equations, Partial Differ.
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Symmetries and Equivalence of Systems of Shallow Water Equations
Over Horizontal and Inclined Bottom

A.V. Aksenov1

1Lomonosov Moscow State University, Moscow, Russia; aksenov@mech.math.msu.su

In dimensionless variables, the system of equations of two-dimensional shallow water over a
horizontal bottom has the following form [1]

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 + 𝜂𝑥 = 0 ,

𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦 + 𝜂𝑦 = 0 ,

𝜂𝑡 +
(︀
𝑢(𝜂 + ℎ)

)︀
𝑥

+
(︀
𝑣(𝜂 + ℎ)

)︀
𝑦

= 0 .

(1)

Here 𝑢 = 𝑢(𝑥, 𝑦, 𝑡), 𝑣 = 𝑣(𝑥, 𝑦, 𝑡) are components of the depth-averaged horizontal velocity; 𝜂 =
𝜂(𝑥, 𝑦, 𝑡) is free surface elevation; 𝜂 + ℎ, 𝜂 + ℎ ≥ 0, ℎ = 𝑐𝑜𝑛𝑠𝑡 is depth. Let us write the system of
equations of two-dimensional shallow water over an inclined bottom in the following form

𝑢′𝑡′ + 𝑢′𝑢′𝑥′ + 𝑣′𝑢′𝑦′ + 𝜂′𝑥′ = 0 ,

𝑣′𝑡′ + 𝑢′𝑣′𝑥′ + 𝑣′𝑣′𝑦′ + 𝜂′𝑦′ = 0 ,

𝜂′𝑡′ +
(︀
𝑢′(𝜂′ + 𝑎𝑥′ + 𝑏𝑦′)

)︀
𝑥′ +

(︀
𝑣′(𝜂′ + 𝑎𝑥′ + 𝑏𝑦′)

)︀
𝑦′ = 0 .

(2)

Here 𝑢′ = 𝑢′(𝑥′, 𝑦′, 𝑡′), 𝑣′ = 𝑣′(𝑥′, 𝑦′, 𝑡′) are components of the depth-averaged horizontal velocity;
𝜂′ = 𝜂′(𝑥′, 𝑦′, 𝑡′) is free surface elevation; 𝜂′ + 𝑎𝑥′ + 𝑏𝑦′ ≥ 0, 𝑎, 𝑏 = 𝑐𝑜𝑛𝑠𝑡 is depth.

Using the algorithm [2], the symmetries of the systems of equations (1) and (2) were found. The
Lie algebras of the symmetry operators are finite-dimensional, so these systems of equations cannot
be linearised by the point transformation. One-dimensional systems of shallow water equations
are linearised by the point transformation: the system of shallow water equations over a horizontal
bottom is linearised by the hodograph transformation [1], and the system of shallow water equations
over an inclined bottom is linearised by the Carrier–Greenspan transformation [3] (see also [4, 5]).

Proposition. Point transformation

𝑥′ = 𝑥+
𝑎𝑡2

2
, 𝑦′ = 𝑦 +

𝑏𝑡2

2
, 𝑡′ = 𝑡 ,

𝑢′ = 𝑢+ 𝑎𝑡 , 𝑣′ = 𝑣 + 𝑏𝑡 , 𝜂′ = 𝜂 − 𝑎
(︁
𝑥+

𝑎𝑡2

2

)︁
− 𝑏

(︁
𝑦 +

𝑏𝑡2

2

)︁
+ ℎ

(3)

determines the equivalence of the systems of equations (1) and (2).

Remark. The transformation inverse to the transformation (3) has the form

𝑥 = 𝑥′ − 𝑎𝑡′2

2
, 𝑦 = 𝑦′ − 𝑏𝑡′2

2
, 𝑡 = 𝑡′ ,

𝑢 = 𝑢′ − 𝑎𝑡′ , 𝑣 = 𝑣′ − 𝑏𝑡′ , 𝜂 = 𝜂′ + 𝑎𝑥′ + 𝑏𝑦′ − ℎ .
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Nonlinear Boussinesq Type Equations Under Mixed Boundary
Conditions For Temperature

G.V. Alekseev1,2, O.V. Soboleva1,2

1Institute of Applied Mathematics FEB RAS, Vladivostok, Russia; alekseev@iam.dvo.ru
(G.A.), soboleva22@mail.ru (O.S.)

2Department of Mathematical and Computer Modelling, Far Eastern Federal University,
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In 1959 L.V. Ovsyannikov published the paper [1] on group properties of differential equations of
nonlinear thermal conductivity. After publication of this paper, the direction related to the study
of the qualitative properties of solutions of heat and mass transfer equations with coefficients
dependent on temperature and/or concentration of dissolved substance began to develop (see, for
example, [2, 3, 4]). But theoretical questions related to the study of correctness of the respective
boundary value problems were studied to a much lesser extent.

The purpose of this work is to analyze the global solvability and local uniqueness of solution of
the boundary value problem for the generalized Boussinesq heat transfer model having the form

−div(𝜈(𝑇 )∇u) + (u · ∇)u + ∇𝑝 = 𝑏(𝑇 )𝑇G, divu = 0 in Ω, (1)

−div(𝜆(𝑇 )∇𝑇 ) + (u · ∇)𝑇 = 0 in Ω, (2)

u = g on Γ, 𝜆(𝑇 )(𝜕𝑇/𝜕n + 𝛼(𝑇 )𝑇 ) = 𝜒 on Γ𝑁 and 𝑇 = 𝜓 on Γ𝐷. (3)

Here u is the velocity vector, 𝑇 is the temperature of medium, 𝑝 = 𝑃/𝜌0, where 𝑃 is the pressure,
𝜌0 = const is the fluid density, 𝜈 = 𝜈(𝑇 ) > 0 is the kinematic (molecular) viscosity coefficiemt,
𝜆 = 𝜆(𝑇 ) > 0 is the thermal conductivity coefficient, 𝑏 ≡ 𝑏(𝑇 ) is the heat expansion factor,
𝛼 = 𝛼(𝑇 ) is the heat exchange coefficient, G = −(0, 0, 𝐺) is the gravitational acceleration.

We develop mathematical apparatus of studying inhomogeneous boundary value problem under
consideration. It is based on using of a weak solution of the boundary value problem (1)–(3) and
construction of liftings of the inhomogeneous boundary data (3). They remove the inhomogeneity
of the boundary data and reduce original problem (1)–(3) to equivalent homogeneous boundary
value problem. Based on this apparatus we will prove the theorem on the global existence of a
weak solution to boundary value problem under study and establish important properties of the
solution. In particular, we will prove the validity of the maximum principle for the temperature.
We will also establish sufficient conditions for the data, ensuring the local uniqueness of the weak
solution having an additional property of smoothness for temperature.

This work was supported by the state assignment of the Institute of Applied Mathematics FEB
RAS (Theme No. AAAA-A20-120120390006-0).
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Exact solitary wave solutions for a coupled gKdV-NLS system
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A coupled gKdV-NLS system

𝑢𝑡 + 𝛼𝑢𝑝𝑢𝑥 + 𝛽𝑢𝑥𝑥𝑥 = 𝛾(|𝜓|2)𝑥,

𝑖𝜓𝑡 + 𝜅𝜓𝑥𝑥 = 𝜎𝑢𝜓

with a general nonlinearity power 𝑝 > 0 is studied. This system has been introduced in the
literature [1, 2] to model energy transport in anharmonic crystal materials.

There is a strong interest in obtaining exact solutions describing frequency-modulated solitary
waves

𝑢 = 𝑈(𝑥− 𝑐𝑡), 𝜓 = 𝑒𝑖𝜔𝑡Ψ(𝑥− 𝑐𝑡),

where 𝑐 is the wave speed, and 𝜔 is the modulation frequency. For the KdV case 𝑝 = 1, some
solutions have been found in [1], while for the mKdV case 𝑝 = 2 in [2], no exact solutions were
found. Nothing has been done for higher nonlinearities 𝑝 ≥ 3.

In the present work, we derive exact solutions for 𝑝 = 1, 2, 3, 4, starting from the travelling
wave ODE system satisfied by 𝑈 and Ψ. The method is new:
(i) obtain first integrals by use of multi-reduction symmetry theory [3];
(ii) apply a hodograph transformation which leads to triangular (decoupled) system;
(iii) introduce an ansatz for polynomial solutions of the base ODE;
(iv) characterize conditions under which solutions yield solitary waves;
(v) solve an algebraic system for the coefficients in the ansatz under those conditions.

The resulting solitary waves exhibit a wide range of features: bright and dark peaks; single
peaked and multi-peaked; zero and non-zero backgrounds.

This method can be applied more generally to nonlinear systems of dispersive wave equations.

The author is supported by an NSERC Discovery grant.
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This study employs Lie’s invariance infinitesimal criterion to derive continuous equivalence
transformations for a class of nonlinear Schrödinger equations characterized by variable coefficients.
Within the framework of these transformations, we formulate differential invariants which play a
crucial role in exposing solvable forms of the considered Schrödinger equations. The deduced
invariants lead to remarkable reductions of the Schrödinger equations compared to the general
nonlinear Schrödinger equations under consideration. Such reductions are shown to facilitate the
derivation of exact solutions for the Schrödinger equations.
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Reality conditions for the KdV equation and quasi-periodic solutions
in finite phase spaces
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In this paper reality conditions for quasi-periodic finite-gap solutions of the KdV equation are
determined. That is, real-valued quasi-periodic solutions, which describe nonlinear waves, are
proposed in every finite phase space of the hierarchy of hamiltonian systems of the KdV equation.
These solutions are expressed in terms of the abelian ℘1,1-function, which comes as a result of
algebro-geometric integration.

An effective computation of such solutions is suggested, and illustrated in genera 2 and 3. In
particular, this wave arises in a 6-dimensional (3-gap) phase space.

The talk is based on preprint arXiv:2312.10859.
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Reduction Operators for Monge-Ampère Equations
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In this talk, reduction operators related to two-dimensional Monge-Ampère equations are dis-
cussed. A degenerated case that occurs while applying the nonclassical method (due to Bluman and
Cole) to these types of nonlinear partial differential equations is studied. It is shown that specific
Monge-Ampère equations may be reduced to systems of first order partial differential equations,
and, additionally, their solutions are related to Monge and Bateman equations. The connection of
these results with the direct method (by Clarkson and Kruskal) is also presented.
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Toward the existence of nonlinear solitary waves (solitons) in a freely
interacting transonic viscous flow. Hypotheses, degeneracy and

regularization of the model
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The necessity of regularizing the classical model for studying the propagation of solitons in a
nonstationary transonic flow over a solid surface in the mode of free viscous-inviscid interaction is
substantiated. Keywords: gas dynamics, nonlinear waves, solitons, transonic flow, viscous-inviscid
interaction, boundary layer.

The hypothesis of the existence of stable solitary waves (solitons) in a freely viscous-inviscid
interacting flow was expressed by V.I. Zhuk [1]. For the existence of waves of this kind, it is
necessary to combine the action of a wave of nonlinearity increasing the steepness of the profile
and, conversely, stretching the dispersion profile. The wave dissipation suppressing the wave
process, reducing the amplitude of the waves, will not prevent the tipping of the wave front.
Understanding the behavior of solitons in the boundary layer plays an important role in connection
with the concept [2] of the soliton nature of the so-called K-mode of laminar flow destruction.
Namely, the ”spike bursts” (of negative amplitude) observed on oscillograms are not stochastic in
nature, but represent definitely formed periodic structures with constant properties (the distances
of maintaining shape constancy during the propagation of disturbances downstream amount to
dozens of their characteristic sizes and more than a hundred boundary layer thicknesses).

At large longitudinal gradients of flow parameters, boundary layers exert, through a pressure
gradient, a reverse effect on the main flow, in interaction with which they arise, and thus are
processes with self-induced pressure. To distinguish from the usual (classical) Prandtl boundary
layers, such boundary layers are called non-classical.

The main achievements in the analytical study of such non-classical boundary layers were
obtained using the ”three-deck” model [3]. Perturbations of the flow field during the propagation
of soliton-like waves in the boundary layer have an amplitude exceeding the permissible by ”three-
deck” model and are studied using the ”four-deck” model [4].

Further development of the asymptotic theory for boundary layers of this kind revealed that the
description of the unsteady free visco-inviscid interaction in the transonic regime using three- and
four-deck asymptotic models gives an incomplete picture of the flow field, since the Lin-Reissner-
Qian equation included in the model turned out to be degenerate hyperbolic, in connection with
which regularization of the three-deck model was proposed [5]. The regularized model makes it
possible to describe the processes of wave propagation in all directions in the flow field, and not only
upstream, and to analyze their development, which was previously excluded from consideration
while using the classical model. Thus, there are grounds to assume that the study conducted in
[1] does not provide a complete picture of the processes of behavior of solitons in the transonic
viscous flows.
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Lie Group Geometry in the Group Analysis
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Let 𝐺 be an 𝑛-dimensional group parameterised by local coordinates 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛

and Ξ be the corresponding generating algebra with the basis {Ξ𝛼 = 𝜉𝑖𝛼(𝑥)𝜕𝑖}𝑛𝛼=1.
Theorem 1. The set of metrics 𝑔𝑖𝑗(𝑥)𝑑𝑥𝑖𝑑𝑥𝑗 , defined on 𝐺 and remaining invariant under the

action of this group, forms a linear space of dimension 𝑛(𝑛+1)
2 .

Theorem 2. There are exactly 𝑛 linear differential forms 𝜔𝛼 = 𝜔𝛼
𝑖 𝑑𝑥

𝑖 (𝛼 = 1, . . . , 𝑛) that are
invariant under algebra Ξ.

Corollary. All metric forms from Theorem 1 are quadratic forms 𝑑𝑠2 = 𝑞𝛼𝛽𝜔
𝛼𝜔𝛽 of 𝜔𝛼 with

constant coefficients 𝑞𝛼𝛽 .
Let us denote by 𝜔𝑖

𝛼 the matrix inverse to the matrix 𝜔𝛼
𝑖 of coefficients of differential forms 𝜔𝛼.

Then all operators Ω𝛼 = 𝜔𝑖
𝛼𝜕𝑖 commute with all Ξ𝛽 : [Ω𝛼,Ξ𝛽 ] = 0.

Definition. We call the algebra Ω formed by solutions of the system of equations [Ξ𝛼,Ω] = 0
d u a l to the algebra Ξ.

Let
𝑑𝑥1

𝜑1(𝑥)
= · · · =

𝑑𝑥𝑛

𝜑𝑛(𝑥)
(1)

be equations of a family of curves invariant under the group 𝐺. Multiplying (1) by a suitable
factor, it is possible to obtain 𝜔𝛼

𝑖 𝜑
𝑖 be constants. Denote them by 𝜆𝛼.

For any invariant metric 𝑑𝑠2 = 𝑞𝛼𝛽𝜔
𝛼𝜔𝛽 the unit tangent vector 𝜏 = (𝜏 𝑖) to curve (1) has the

form 𝜏 𝑖 = 𝑑𝑥𝑖

𝑑𝑠 = 𝜑𝑖(𝑥)√
𝑄

, 𝑄 = 𝑞𝛼𝛽𝜆
𝛼𝜆𝛽 and therefore on the tangent vector 𝜏 the corresponding

linear forms turn out to be constant: 𝜔𝛼
𝑖 𝜏

𝑖 = 𝜆𝛼
√
𝑄

.

Remark. The vector 𝜑𝑖 = 𝜆𝛼𝜔𝑖
𝛼 is a linear combination of vector fields generating the dual

algebra Ω. Therefore the invariant under the algebra Ξ trajectories (1) are in fact trajectories of
a one-parameter subgroup from the dual algebra.

Let us denote by 𝜏𝑁 = (𝜏𝑘𝑁 ) the Frenet frame, numbered by the index 𝑁 = 1, . . . , 𝑛, and,
accordingly, 𝜆𝛼𝑁 = 𝜔𝛼

𝑖 𝜏
𝑖
𝑁 .

Theorem 3. In terms of the quantities 𝜆𝛼𝑁 , the Frenet system has the form

𝑑𝜆𝛾𝑁
𝑑𝑠

+𝐻𝛾
𝛼𝛽𝜆

𝛼
𝑁𝜆

𝛽
1 = −κ𝑁−1𝜆

𝛾
𝑁−1 + κ𝑁𝜆

𝛾
𝑁+1,

where 𝐻𝛾
𝛼𝛽 are constants defined by the formula

𝐻𝛾
𝛼𝛽 = −1

2
[𝑞𝛾𝜎𝑞𝜇𝛽𝐶

*𝜇
𝛼𝜎 + 𝐶*𝛾

𝛼𝛽 + 𝑞𝛾𝜎𝑞𝛼𝜈𝐶
*𝜈
𝛽𝜎] (2)

and 𝐶*𝛾
𝛼𝛽 are structure constants of the algebra with basis Ω𝛼.

Corollary. For all invariant curves all their curvatures and all quantities 𝜆𝛼𝑁 are constant.
Theorem 4. For any metric 𝑔𝑖𝑗(𝑥) = 𝑞𝛼𝛽𝜔

𝛼 the corresponding Riemann and Ricci tensors

have the form 𝑅𝑙
𝑖𝑗𝑘 = 𝑀𝜃

𝛼𝛽𝛾𝜔
𝑙
𝜃𝜔

𝛼
𝑖 𝜔

𝛽
𝑗 𝜔

𝛾
𝑘 , 𝑅𝑖𝑗 = 𝑀𝛼𝛽𝜔

𝛼
𝑖 𝜔

𝛽
𝑗 , where 𝑀

𝜃
𝛼𝛽𝛾 = −𝐶*𝜎

𝛽𝛾𝐻
𝜃
𝛼𝜎 + 𝐻𝜃

𝜎𝛽𝐻
𝜎
𝛼𝛾 −

𝐻𝜃
𝜎𝛾𝐻

𝜎
𝛼𝛽 , 𝑀𝛼𝛽 = 𝑀𝛾

𝛼𝛽𝛾 , 𝐻
𝜎
𝛼𝛽 are constants defined by the formula (2), and 𝐶*𝛾

𝛼𝛽 are structure
constants of the algebra Ω.

The author gratefully acknowledge financial support by Ministry of Science and Higher Edu-
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Gravity currents are ubiquitous in geophysical, industrial, and environmental settings. Mixing,
often driven and dominated by shear instability, plays a crucial role in the dynamics of these
currents. Shear flows of stratified fluid over an uneven bottom are widespread in nature. The results
of recent field observations of deep-sea currents in the Atlantic Ocean (Vema channel, Romanche
and Chain fracture zones) are presented in [1, 2]. It has been established that it is possible to
distinguish an active bottom layer, consisting of a homogeneous “flow core” and an intermediate
layer in which the flow interfaces with the upper “passive” layer. Such a layered flow pattern and
ideal channel geometry, ensuring two-dimensionality of the flow, are assumed when constructing
a mathematical model. In our works [3, 4], using the Boussinesq approximation, a model was
obtained that describes internal hydraulic jumps and mixing of homogeneous co-directional flows
of different densities.

In this work, we focus on three-layer stratified flow, taking into account the entrainment of fluid
from the outer layers into the intermediate vortex layer. The equations of motion are presented
in the form of a non-linear system of inhomogeneous conservation laws. It is assumed that the
rate of fluid entrainment into the vortex layer is specified by the equilibrium condition within the
framework of a more general three-layer model [4]. This assumption allows us to significantly sim-
plify the model and present it in the form of an evolutionary system of four equations. Using the
characteristic velocities of the proposed model, we define the concept of a supercritical (subcritical)
three-layer flow. We study classes of stationary flows over an uneven bottom and construct ex-
amples of continuous and discontinuous solutions that describe the spatial evolution of the mixing
layer. It is shown that the model is applicable to describe the characteristic features of mixing
and flow splitting in deep-sea currents [1, 2]. We perform unsteady calculations of the stratified
flow over a combined obstacle and show that the formation of an internal hydraulic jump leads
an intense mixing and growth of the vortex intermediate layer. The possibility of controlling the
position of an internal hydraulic jump on the leeward side of an obstacle is shown. Experimental
data [5] confirm the results of numerical simulation.

This work was supported by the Russian Science Foundation (grant No. 23-41-00090).
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For a three-dimensional generalized model of nonlinear hydroacoustics by Khokhlov-Zabolotskaya-
Kuznetsov in a cubic nonlinear medium in the absence of dissipation, the attenuation of ultrasonic
beams after the formation of shock fronts is studied. Earlier, in the work of one of the authors
for this model, submodels were obtained and studied, described by non-stationary solutions, in-
variant with respect to some three-dimensional subgroups of the main ten-parameter group of the
differential equation that defines this model. In our work, four non-stationary submodels of this
model that are invariant with respect to four-parameter subgroups of the main group of this dif-
ferential equation are obtained and studied. These submodels are new submodels and have not
been previously noted in the literature. They are given by invariant solutions of rank 1. Among
these 4 submodels, 2 submodels describe axisymmetric ultrasonic beams, the remaining 2 describe
one-dimensional ultrasonic beams. The search for invariant solutions that define these 4 submodels
is reduced to solving of nonlinear integral equations, the implicit solutions of which are obtained
in the form of nonlinear algebraic equations containing transcendental functions. These submodels
are used to study the propagation of ultrasonic beams, for which either the acoustic pressure and
its rate of change or the acoustic pressure and its gradient are given at the initial time at a fixed
point. Conditions are obtained that ensure the existence and uniqueness of solutions to boundary
value problems describing these processes. This makes it possible to correctly carry out numerical
calculations in the study of these processes. As a result of the numerical solution of these boundary
value problems for some values of the parameters characterizing these processes, pressure distribu-
tion graphs were obtained. In all cases, ultrasonic beams are weaken monotonically with time and
completely fade away in a finite time. At each point, the time of complete attenuation of ultrasonic
beams is found.

The obtained and studied new submodels are another step towards the creation of a database
of physically significant submodels of the three-dimensional generalized model of nonlinear hy-
droacoustics by Khokhlov-Zabolotskaya-Kuznetsov in a cubic nonlinear medium in the absence
of dissipation, which describes the attenuation of ultrasonic beams after the formation of shock
fronts.
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For a three-dimensional generalized model of nonlinear hydroacoustics by Khokhlov-Zabolotskaya-
Kuznetsov in a cubic nonlinear medium in the absence of dissipation, the attenuation of ultrasonic
beams after the formation of shock fronts is studied. Earlier, in the work of one of the authors
for this model, submodels were obtained and studied, described by non-stationary solutions, in-
variant with respect to some three-dimensional subgroups of the main ten-parameter group of the
differential equation that defines this model. In our work, four non-stationary submodels of this
model that are invariant with respect to four-parameter subgroups of the main group of this dif-
ferential equation are obtained and studied. These submodels are new submodels and have not
been previously noted in the literature. They are given by invariant solutions of rank 1. Among
these 4 submodels, 2 submodels describe axisymmetric ultrasonic beams, the remaining 2 describe
one-dimensional ultrasonic beams. The search for invariant solutions that define these 4 submodels
is reduced to solving of nonlinear integral equations, the implicit solutions of which are obtained
in the form of nonlinear algebraic equations containing transcendental functions. These submodels
are used to study the propagation of ultrasonic beams, for which either the acoustic pressure and
its rate of change or the acoustic pressure and its gradient are given at the initial time at a fixed
point. Conditions are obtained that ensure the existence and uniqueness of solutions to boundary
value problems describing these processes. This makes it possible to correctly carry out numerical
calculations in the study of these processes. As a result of the numerical solution of these boundary
value problems for some values of the parameters characterizing these processes, pressure distribu-
tion graphs were obtained. In all cases, ultrasonic beams are weaken monotonically with time and
completely fade away in a finite time. At each point, the time of complete attenuation of ultrasonic
beams is found.

The obtained and studied new submodels are another step towards the creation of a database
of physically significant submodels of the three-dimensional generalized model of nonlinear hy-
droacoustics by Khokhlov-Zabolotskaya-Kuznetsov in a cubic nonlinear medium in the absence
of dissipation, which describes the attenuation of ultrasonic beams after the formation of shock
fronts.
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The behavior of a fluid near the critical point is considered using Maxwell’s equations. The
model under study is the Johnson-Sigalman model. Although the study of stagnation point flow
problems has been studied frequently, general exact analytical solutions for the cylindrical case,
which are more suitable for certain experiments, have not been explored. In this study, we obtained
the general solution of Maxwell’s equations for the cylindrical case of the critical point problem.
The presentation is focused to the upper convection derivative.
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We discuss the Noether theorem for differential and difference equations, Nother’s operator
identity and conservation laws. We also consider the Hamilton identity, which provides with simple
and quick link to first integrals for ODEs and for difference ODEs. Based on the Lagrangian identity
the method of adjoint equations gives the possibility to find conservation laws for equations without
Lagrangian and Hamiltonian. We show the connection of this method with so called direct method.
We discuss also the Lagrangian formalism for variational delay ordinary differential equations. The
Noether operator identity is used to formulate the Noether-type theorems, which allow to find first
integrals for delay ODEs.

The presentation is based on the joint works with R.Kozlov, P.Winternitz, S.Meleshko and
E.Kaptsov.
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The report will consider examples of metrics of multidimensional Riemannian spaces associated
with the Navier-Stokes (NS) system of equations. In the case of a 14D metric with Riemann
curvature 𝑅𝑖𝑗𝑘𝑙 and its Ricci curvature tensor 𝑅𝑖𝑘, depending on the variety of the Lie group 𝐸8,
it has four components that vanish, provided that the functions of pressure and velocity of the
liquid satisfy the equations NS. The 8D-space metric is a composition of two 4D dual metrics
with scalar Cartan invariants and is used to study the properties of flows with the Eulerian and
Lagrangian approaches in describing the properties of flows of a viscous incompressible fluid. In
the case of 6D-space, the Ricci tensor of the metric has nonzero components depending on the
velocity functions 𝑈, 𝑉,𝑊 and is used to study the properties of its Ricci flows. The behavior
of geodesic lines of metrics depends on the invariants of Cartan of the metrics and can be both
regular and chaotic.
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A.Ya. Narmanov1, Sh. R. Ergashova2

Department of Mathematics, National University of Uzbekistan, Tashkent, Uzbekistan;
1narmanov@yandex.com, 2shohida.ergashova@mail.ru

Definition-1 Let 𝑀𝑚 (where 𝑚 = 2𝑛) be a Poisson manifold and 𝑠𝑔𝑟𝑎𝑑𝐻 Hamiltonian vector
field with a smooth Hamiltonian function 𝐻.

Hamiltonian system 𝑠𝑔𝑟𝑎𝑑𝐻 is called completely integrable in the sense of Liouville or com-
pletely integrable, if exists set of smooth functions 𝑓1, ..., 𝑓𝑛 as:

1) 𝑓1, ..., 𝑓𝑛 are first integrals of 𝑠𝑔𝑟𝑎𝑑𝐻 Hamiltonian vector field,
2) they are functionally independent on 𝑀 , that is, almost everywhere on 𝑀 their gradients

are linearly independent,
3) {𝑓𝑖, 𝑓𝑗} = 0 for any 𝑖 and 𝑗,
4) the vector fields 𝑠𝑔𝑟𝑎𝑑𝑓𝑖 are complete, that is natural parameter on their integral trajectories

is defined on the whole number line [3].

Definition-2 Partition of the manifold 𝑀𝑚 into connected components of joint level surfaces of
the integrals 𝑓1, ..., 𝑓𝑛 is called The Liouville foliation corresponding to the completely integrated
system.

Let 𝑠𝑔𝑟𝑎𝑑𝐻 be a completely integrable Hamiltonian vector field and with Hamiltonian function
𝐻 : R4 → R on the four dimensional Euclidean space with the Cartesian coordinates (𝑝1, 𝑝2, 𝑞1, 𝑞2)
with equation:

𝐻 = 𝐻(𝑝1, 𝑝2, 𝑞1, 𝑞2) (1)

The Hamiltonian vector field corresponding to 𝐻 [1] is

𝑠𝑔𝑟𝑎𝑑𝐻 = −𝜕𝐻
𝜕𝑞1

· 𝜕
𝜕𝑝1

− 𝜕𝐻

𝜕𝑞2
· 𝜕
𝜕𝑝2

+
𝜕𝐻

𝜕𝑝1
· 𝜕
𝜕𝑞1

+
𝜕𝐻

𝜕𝑝2
· 𝜕
𝜕𝑞2

, (2)

where Hamiltonian system has following form

𝑑𝑝𝑖

𝑑𝑡
= −𝜕𝐻

𝜕𝑞𝑖
,
𝑑𝑞𝑖

𝑑𝑡
=
𝜕𝐻

𝜕𝑝𝑖
, 𝑖 = 1, 2. (3)

We assume that Hamiltonian system is completely integrable and following functions

𝐹 1 = 𝐹 1(𝑝1, 𝑞1), 𝐹 2 = 𝐹 2(𝑝2, 𝑞2) (4)

are first integrals of Hamiltonian system (3).
Level surfaces of these first integrals generates Liouville foliation. If the dimension of the leaf

𝐿 is maximal, it is called regular, otherwise 𝐿 is called singular.

Theorem. Regular leaves of Liouville foliation generated by Hamiltonian system (3) are two
dimensional surfaces with zero Gauss curvature and zero Gauss torsion.
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The paper considers the construction of characteristics of the Cauchy problem for a particular
planar problem at y=0 using conservation laws The Cauchy problem, one of the main problems
of the theory of differential equations, consists in integrating a differential equation satisfying
boundary conditions.

We set the Cauchy problem for a plasticity system that determines the stress state of a plastic
medium under plane deformation. In the plane of variables x y, the line L is set: y=0,. Smooth
functions 𝜎 = 𝜎0(𝑥), 𝜃 = 𝜃0(𝑥) are given on L, the solution of which is continuous together with
derivatives up to and including the second order. It is necessary to find a solution in the vicinity
of L. Let’s set the points S,P on L𝑆 ≤ 𝑥 ≤ 𝑃 . By releasing the characteristic PR:𝜉 = 𝜎

2𝑘 − 𝜃 from
point P and the characteristic SR:𝜂 = 𝜎

2𝑘 + 𝜃 from some point S. Before their intersection at point
R, then the solution of the Cauchy problem is defined in a curved triangle SPR

It is necessary to determine the coordinates of the point R of the intersection of the character-
istics. The solution at point R depends only on the data on line L. Knowing the coordinates of
the points R, it is possible to construct sliding lines formed by these points.

It is worth noting that the Cauchy problem has a solution if: the characteristics of one family
do not intersect, the line L is not a characteristic of the system of Levy equations and each
characteristic of this system can intersect it only once.

We checked the calculations under various boundary conditions and found out that not all
boundary conditions have a solution to the Cauchy problem, in some cases the characteristics of
one family intersect, which makes the values along them different and violates the continuity of
the solution.

Thus, the Cauchy problem does not have solutions for all boundary conditions, but it is im-
possible to check these conditions at the present time, since when setting the problem, we do not
know the characteristics and cannot guarantee its correct formulation until the problem itself is
solved. Therefore, it is necessary to develop requirements for setting boundary conditions under
which the Cauchy problem would have a solution, this problem will be considered in future works.
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Helicity in dispersive continuum mechanics

S. L. Gavrilyuk

Aix-Marseille University, France; sergey.gavrilyuk@univ-amu.fr

New conservation laws generalizing the helicity integrals are obtained for a class of dispersive
models of fluid mechanics. Applications to specific dispersive models are discussed (Euler-van der
Waals- Korteweg fluids, Serre-Green-Naghdi equations, equations of bubbly fluids, ... ).

This is a joint work with Henri Gouin.
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We study 3D nonlinear dynamical system

𝑑𝑥1
𝑑𝑡

= 𝐿(𝑥3) − 𝑥1;
𝑑𝑥2
𝑑𝑡

= 𝐿(𝑥1) − 𝑥2;
𝑑𝑥3
𝑑𝑡

= 𝐿(𝑥2) − 𝑥3; (1)

considered as a model of a simple molecular repressillator.
Here, 𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡) denote concentrations of its components, and the two-steps monoton-

ically decreasing function 𝐿 is defined as follows: 𝐿(𝑤) = 2𝑎 for 0 ≤ 𝑤 < 𝑎 − 𝜀, 𝐿(𝑤) = 𝑎 for
𝑎− 𝜀 ≤ 𝑤 < 𝑎+ 𝜀, and 𝐿(𝑤) = 0 for 𝑎+ 𝜀 ≤ 𝑤. This function describes negative feedbacks in the
gene network.

Similar gene networks were studied in [1]. Note that the cube 𝑄 = [0, 2𝑎] × [0, 2𝑎] × [0, 2𝑎] is
positively invariant domain of the system (1). We decompose 𝑄 by six planes 𝑥𝑗 = 𝑎−𝜀, 𝑥𝑗 = 𝑎+𝜀,
𝑗 = 1, 2, 3, to 27 blocks. The system (1) has a very simple linear formn each of these blocks, and
we enumerate them by multi-indices {𝑠1𝑠2𝑠3} so that 𝑠𝑗 = 0 if 0 ≤ 𝑥𝑗 < 𝑎− 𝜀 in this block; 𝑠𝑗 = 1
if 𝑎 − 𝜀 ≤ 𝑥𝑗 < 𝑎 + 𝜀; and 𝑠𝑗 = 2 if 𝑎 + 𝜀 ≤ 𝑥𝑗 . The system (1) is symmetric with respect to the
cyclic permutations of the variables

𝑥1 → 𝑥2 → 𝑥3 → 𝑥1.

Theorem 1. If 6𝜀 < 𝑎 then the system (1) has a stable equilibrium point 𝑆0 = (𝑎, 𝑎, 𝑎); at the
same time, the cube 𝑄 contains a piecewise linear cycle composed by 12 segments, all of them are
located sufficiently far from the block {111}.

So, this point 𝑆0 ∈ {111} is the hidden attractor of the system (1).
Previously, similar phenomena, including non-uniqueness of cycles of similar dynamical systems,

were known only in higher-dimensional cases, see [2, 3].

The study was supported by a grant Russian Science Foundation N 23-21-00019,
https://rscf.ru/project/23-21-00019/
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Mass transfer processes of a gas dissolved in a liquid are slow diffusion processes in comparison
the mass transfer of a gas dissolved in a gas or a liquid dissolved in another liquid. This is due
to the low diffusion coefficient of gas in liquid, which is 5000...10000 times less than the diffusion
coefficient of gas in gas [1].

Due to this physical limitation, it is necessary to increase the overall mass transfer rate by
increasing the interfacial surface. In turn, an increase in the integral gas flow, achieved with
an increased surface, will increase the rate of physical and chemical processes (gas dissolution -
absorption at an increased partial pressure of the target component in the gas phase, degassing
at a reduced partial pressure of the target component in the gas phase, chemical reactions of gas
with liquid) in the surface layer near the liquid-gas interface [2]. One of the most effective ways
to increase the interfacial surface is to create ultrasonic cavitation in the continuous liquid phase,
which makes it possible to excite surface waves on stable gas bubbles formed as part of the bubbling
process [3].

The diffusion-thermodynamic model of the evolution of the size of the spherical gas bubble in
the spherical approximation was proposed. The closed system of equations for the evolution of
the bubble size, the distribution of concentrations of gas components in it, and the temperature
distribution is constructed. The method was proposed for representing solutions in the form of
integrals of elementary functions of the following kind

𝑒−𝑘2𝑡− 𝑘𝑟
𝐷𝑅 𝑓𝑘

(︁
𝑡,
𝑟

𝑅

)︁
; (1)

where 𝑘 is scale of parameter’s (concentration or temperature) gradient, 𝑚−1; 𝑅 is bubble radius,

m; 𝑡 is time, s; 𝐷 is diffusion or temperature conductivity coefficient, 𝑚2

𝑠 ; 𝑓𝑘 is function taking
into account bubble radius changing.

Based on the proposed representation and using the properties of uniform convergence of in-
tegrals, approximate equations were obtained that describe the evolution of the concentrations of
gas components and temperature near the boundary of the bubble along with the radius of the
latter using the apparatus of fractional time derivatives [4]. The numerical solution of the proposed
equations made it possible to find the ranges of ultrasonic exposure modes that ensure the stable
existence of a bubble bubble without collapse, depending on its size and the initial content of gas
components. Next, having found the conditions for the stable existence of a bubble bubble, an
analysis of the formation of capillary waves was carried out. An equation has been constructed for
the formation of a wave of a fixed length on the surface of a bubble based on the exact solution
of the Laplace equation for the velocity potential of the surrounding fluid with the boundary con-
ditions of a “capillary jump”. Based on the constructed partial differential equation, an equation
is derived for the formation of waves of an arbitrary profile, but of small amplitude, throughout
the entire shell of the bubble using the apparatus of fractional derivatives with respect to time.
Using multiple differentiation by time, an equation with integer derivatives was constructed. The
new equation contains the 4th order time derivative and the triple Laplace operator in the tangent
coordinate system. The tangent coordinate system is the system in which the x,y plane coincides
with the tangent plane at a given point, and the z axis is perpendicular to the tangent plane.
Next, using an equation with integer derivatives, the method was proposed for calculating the
eigen frequencies of oscillations of a spherical bubble, which provide capillary wavelengths that are
small compared to the radius of the bubble. Finally, the influence of the curvature of a spherical
surface on the distortion of capillary waves is analyzed.
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The study of the convective processes with evaporation in the two-layer systems is one of
the actual research directions in the field of thermophysics and hydrodynamics. The developed
experimental methods, including the experimental rig, optical techniques, PIV method and infrared
photography, make it possible to measure the evaporative mass flow rates, interface temperature
and surface temperature gradients, shear and thermocapillary stresses. These flow characteristics
were investigated for the ethanol (HFE-7100) – air (nitrogen) working systems with a layer thickness
in the range of [1–8] (mm). New experimental data were obtained for the gas flow velocity varied
from 0.001389 to 1.389 (m/s). When choosing the input data for theoretical studies, the working
parameters admitted by the experimental setup and the available experimental data determining
the thermal conditions and based on thermograms are taken into account.

The flows in the liquid and gas-vapor systems are studied analytically and numerically on the
basis of the Oberbeck – Boussinesq approximation of the Navier – Stokes equations. The governing
equations and boundary relations take into account additionally the thermodiffusion and diffusive
thermal conductivity effects occurring in the vapor-gas layer due to the presence of an evaporated
component. The Ostroumov – Birich type exact solutions of the convection equations having the
group nature are obtained to describe the flows in the infinite horizontal channels in the 3D case.
The flows appear in the transversely directed gravity field under the action of the longitudinal
temperature gradient. In the 3D case the analytical representations of the unknown functions
cannot be constructed only by direct integration. A reduction procedure to a chain of the two-
dimensional statements is carried out in order to organize numerically construction of the solution.

Analytical and numerical studies of the two-phase flows with the diffusive-type evaporation or
condensation at the interface demonstrate the flow regimes observed in the real physical systems.
The influence of different boundary conditions for the temperature and vapor concentration func-
tions on the flow topology and the thermal and concentration fields was studied. Comparison of
the calculated values of the evaporation rate and temperature drops in the system obtained on the
basis of mathematical model with those measured in the experiments is performed. This enables
to identify meaningful formulations of the boundary value problems and to indicate the ranges of
variation of the control parameters provided an adequate description of the processes under study.
Theoretical results found a good qualitative and quantitative confirmation by experimental data.

The authors gratefully acknowledge financial support by Russian Science Foundation grant
22-11-00243.
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We use the concept of gauge transformations in the proof of the invariance of the statistics
of zero-vorticity lines in the case of the inverse energy cascade in wave optical turbulence; we
study it in the framework of the hydrodynamic approximation (M.D. Bustamante, S.V. Nazarenko
[Phys. Rev. E. 92, 2015]) of the two-dimensional nonlinear Schrödinger equation for the weight
velocity field 𝑢. The multipoint probability distribution density functions 𝑓𝑛 of the vortex field
Ω = ∇ × 𝑢 satisfy an infinite chain of Lundgren-Monin-Novikov equations (statistical form of
the Euler equations). The equations are considered in the case of the external action in the
form of white Gaussian noise and large-scale friction, which makes the probability distribution
density function statistically stationary. The main result is that the transformations are local and
conformally transform the 𝑛-point statistics of zero- vorticity lines or the probability that a random
curve 𝑥(𝑙) passes through points 𝑥𝑖 ∈ R2 for 𝑙 = 𝑙𝑖, 𝑖 = 1, . . . , 𝑛, where Ω = 0 is invariant under
conformal transformations.
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Systems of Boltzmann kinetic equations with integrals of pair elastic collisions that describe the
evolution of gas mixtures at the molecular level, extremely complicated mathematically. Currently
actually only one class of exact solutions is known, which does not invert the collision integral
to identical zero [1]. Accounting for molecular processes in relaxing chemically reacting gases
further complicates the kinetic equations in which integrals of double and triple inelastic collisions
appear. In order to consider simpler models in the case of weak manifestation of inelastic processes,
it is possible replace the corresponding integrals with some source functions. Wherein sources
modeling integrals of inelastic processes should obviously include one form or another dependence
on a solution. In [2] the transformation of the distribution function (DF) and time, which made
it possible to construct in explicit form a generalized Bobylev–Krook–Wu (BKW) solution for the
source function in the product form of the volumetric density of particles (molecules) and DF,
was found. In this regard, in [3] an extension of the equivalence group has been proposed to take
into account the dependence of source functions on functionals (nonlocal operators) from DF. As
a result, in a class of generalized BKW solutions was explicitly constructed for sources linear in
DF. In this research, this result is generalized to a system of inhomogeneous Boltzmann equations.
A system of equations for a binary mixture of gases is considered, but all the calculations are
easily transferred to an arbitrary number of equations. Extension of the Lie group, admitted by
the system of homogeneous Boltzmann kinetic equations, which is considered as an equivalence
group for inhomogeneous equations was constructed. Conditions have been found under which the
transformation from the extended group vanishes sources in the transformed equations. A class of
sources linear in DF is identified, for which generalized Bobylev–Krook–Wu solutions are obtained
explicitly, in particular, modeling the kinetics of dissociation and recombination processes.

The research was supported by Russian Science Foundation Grant No. 23-11-00027
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The (1+2)− dimensional Jaulent-Miodek hierarchy represents the Energy-dependent potentials
of the nonlinear Schrödinger equation in higher-dimension[1]. The group analysis of the members
of the JM hierarchy is conducted to explicitly list out the similarities and dissimilarities with re-
spect to the wave propagation between the members[2, 3]. The point symmetry analysis of the
fourth member of the hierarchy is quite similar to that of the first member whereas significant
difference is observed between the first three members. The integarbility of the reduced equations
will be deduced by the procedure of Singularity analysis.
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The main objective is to demonstrate the advantages of the invariance method in obtaining new
exact analytic solutions expressed in terms of elementary functions for various physical phenomena.
As one particular application of the invariance method will be the mathematical modeling of oceanic
and at mospheric whirlpools causing weather instabilities and, possibly, linked with climate change.
As another particular example, it will be demonstrated that the invariance method allows to obtain
the exact solutions of fully nonlinear Navier-Stokes equations within a thin rotating atmospheric
shell that serves as a simple mathematical description of an atmospheric circulation caused by the
temperature difference between the equator and the poles with included equatorial flows modeling
heat waves, known as Kelvin Waves. Special attention will be given to analyzing and visualizing
the conserved densities associated with obtained exact solutions. As another modeling scenario, the
exact solution of the shallow water equations simulating equatorial atmospheric waves of planetary
scales will be analyzed and visualized.
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One of us (AQ [1]) had noted a connection between Singularity Analysis and a Distributional
Representation for Special Functions, in that both led to remarkable results due to singularities in
the complex plane. It was further observed that the connection allowed the possibility of obtaining
a second order Ordinary Differential Equation for the Riemann Zeta function, which did not arise
from one (as most special functions do.) Here we present the differential equation for the real part
of the independent variable.
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As is known, the completely integrable soliton equations are associated in the inverse scattering
transform method with certain linear spectral problems, so that solitons’ characteristics are encoded
by the parameters of the discrete spectrum of the corresponding solution. If the number of solitons
is large, then we can use the asymptotic WKB method for calculation of the spectrum which
provides, consequently, the parameters of solitons at asymptotically large time of evolution. In case
of not completely integrable equations, the associated linear spectral problems do not exist and
the above approach becomes inapplicable. We suggest another approach based on the Gurevich-
Pitaevskii theory of dispersive shock waves which can be applied to both integrable and non-
integrable equations. According to this theory, the transition from the initial intensive smooth pulse
to the asymptotic state of soliton trains occurs via an intermediate stage of formation and evolution
of dispersive shock waves, and the nonlinear oscillations in the shocks transform eventually to the
asymptotic solitons. The number of oscillations entering into the shock region per a second is given
by the formula

𝑑𝑁

𝑑𝑡
=

1

2𝜋

(︂
𝑘
𝜕𝜔

𝜕𝑘
− 𝜔

)︂
,

where 𝜔 = 𝜔(𝑘) is the dispersion relation for linear waves propagating along a uniform background.
Integration of this formula over time yields the expression for the Poincaré-Cartan integral invariant

𝑁 =
1

2𝜋

∮︁
(𝑘𝛿𝑥− 𝜔𝛿𝑡), 𝛿𝑥 =

𝜕𝜔

𝜕𝑘
𝛿𝑡.

We show that this integral is preserved by the dispersionless hydrodynamic flow

𝜕𝑟±
𝜕𝑡

+ 𝑣±
𝜕𝑟±
𝜕𝑥

= 0

(written here in terms of the Riemann invariants 𝑟±), if the wave number 𝑘 = 𝑘(𝑟+, 𝑟−) is only a
function of the dispersionless variables and satisfies the equations

𝜕𝑘

𝜕𝑟+
=

𝜕𝜔/𝜕𝑟+
𝑣+ − 𝜕𝜔/𝜕𝑘

,
𝜕𝑘

𝜕𝑟−
=

𝜕𝜔/𝜕𝑟−
𝑣− − 𝜕𝜔/𝜕𝑘

.

These derivatives commute in case of completely integrable equations and for non-integrable equa-
tions we can find asymptotic solutions 𝑘 = 𝑘(𝑟+, 𝑟−, 𝑞) correct for large values of 𝑘 (𝑞 is an
integration constant). Due to preservation of the Poincaré-Cartan integral invariant, this solution
can serve as an integrand function in the generalized Bohr-Sommerfeld quantization rule∫︁ 𝑥2(𝑞𝑛)

𝑥1(𝑞𝑛)

𝑘[𝑟+,0(𝑥), 𝑟−,0(𝑥), 𝑞𝑛)𝑑𝑥 = 2𝜋𝑛, 𝑛 = 1, 2, . . . , 𝑁,

where 𝑟±,0 are the initial distributions. As a result, the parameters 𝑞𝑛, 𝑛 = 1, 2, . . . , 𝑁 , determine
the characteristics (velocities) of the asymptotic solitons [1].
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The geopotential forecast equation is employed to predict the geopotential over areas charac-
terized by rotating air masses situated at intermediate altitudes within the atmosphere. These
vortices are often associated with various weather phenomena and can play a significant role in the
development of weather systems. This equation is often written as [5, 8]

𝜁𝑡 −𝐻𝑦𝜁𝑥 +𝐻𝑥(𝜁 + 𝑓0 + 𝛽𝑦)𝑦 = 0,

where 𝛽 and 𝑓0 are constants, (−𝐻𝑦, 𝐻𝑥) is the two-dimensional velocity potential, 𝜁 = 𝐻𝑥𝑥 +𝐻𝑦𝑦

represents relative vorticity, 𝑓0+𝛽𝑦 is the 𝛽-approximation of the Coriolis parameter, and 𝜁+𝑓0+𝛽𝑦
is the absolute velocity.

Despite the large number of publications on symmetry analysis of the geopotential forecast
equation [5, 8, 9], its group foliations [4] and conservation laws have not previously been considered
or were only briefly mentioned. The results presented in [1] aim to address these shortcomings.
In [1], group foliations are constructed for the equation, and based on them, invariant solutions are
derived, some of which generalize previously known exact solutions. Then, all possible second-order
conservation laws of the geopotential forecast equation are obtained through direct calculations,
and a number of higher-order conservation laws are derived using the known symmetries of the
equation.

The work also adds to the list of known applications of the group foliation approach (such
as [2, 3, 4, 6, 7]). This list is currently not extensive enough, and new examples of the use of group
foliations should be of interest to specialists in the group analysis of differential equations.

The research was supported by Russian Science Foundation Grant No. 23-11-00027. The
author acknowledges Suranaree University of Technology (SUT) and Thailand Science Research
and Innovation (TSRI) for Full-Time Doctoral Researcher Fellowship.
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As is well known, contact transformations are used to solve problems of classical mechanics and
equations of mathematical physics [1]. The most known examples of such transformations are the
Legendre and Ampere transformations. The theory of contact transformations was developed by S.
Lie. At present, there are numerous sources devoted to these issues [2]. The contact transformations
are diffeomorphisms of the jet space that preserve the contact structure. To integrate differential
equations, it is useful to find contact transformations that leave these equations invariant.

However, not only contact transformations are applied to integrate differential equations. Leon-
hard Euler started using differential substitutions, which are not diffeomorphisms, to integrate
linear partial differential equations [3]. Now these substitutions are called the Euler- Darboux
transformation or simply the Darboux transformation.

In this report, we consider analytic mappings of jet spaces that preserve the modulus of canoni-
cal differential forms and call these mappings contact. We prove a lifting lemma that shows how to
construct a contact mapping. For applications to differential equations, the mappings are required
to transform solutions of the equations into solutions of other equations or act on solutions of given
equations. Examples of second-order partial differential equations connected by contact mappings
are given.

We also study contact mappings depending on a parameter. It is easier to look for such
mappings in the form of series in powers of the parameter. As an example, we consider the
Burgers equation. Parametric contact mappings are found that act on solutions of this equation.
These mappings have no inversional maps [4].

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Centers for Mathematics Research and Education (Agreement
no. 075-02-2023-912).
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In recent years, using the geometric and real analysis methods, essential progress has been
achieved in some classical Leray’s problems on stationary motions of viscous incompressible fluid:
the existence of solutions to a boundary value problem in a bounded plane and three-dimensional
axisymmetric domains under the necessary and sufficient condition of zero total flux; the uniqueness
of the solutions to the plane flow around an obstacle problem in the class of all D-solutions,
the nontriviality of the Leray solutions (obtained by the ”invading domains” method) and their
convergence to a given limit at low Reynolds numbers; and, more generally, the existence and
properties of D-solutions to the boundary value problem in exterior domains in the plane and
three-dimensional axisymmetric case, etc. A review of these advances and methods will be the
focus of the talk. Most of the reviewed results were obtained in our joint articles with Konstantin
Pileckas, Remigio Russo, Xiao Ren, and Julien Guillod, see, e.g., the recent survey paper J. Math.
Fluid Mech. 25 (55) (2023), http://dx.doi.org/10.1007/s00021-023-00792-w
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We introduce a new class of unilaterally constrained problems for fully coupled poroelastic
models stemming from hydraulic fracturing and study its well-posedness. The poroelastic medium
contains a fluid-driven crack, which is subjected to non-penetrating conditions and cohesion forces
between the crack faces [4]. Compared to the classical model of a hydraulically open fracture,
non-penetration allows compression at which the fracture can be mechanically closed [10, 11].
Solvability of the governing elliptic-parabolic variational inequality under the unilateral constraint
with a small cohesion is established using the incremental approximation based on Rothe’s semi-
discretization in time [6].

For the poroelastic system with cohesionless non-penetrating crack, the incremental model is
expressed by a saddle-point problem with respect to the unknown solid phase displacement, pore
pressure, and contact force [3, 7, 9]. Applying the Lagrange multiplier approach and Delfour–
Zolesio theorem, formula of the shape gradient under crack perturbation is derived [8]. Ii is
useful for finding numerical solution by minimization schemes of gradient type [1, 5]. In the plane
isotropic setting, a Fourier series solution is obtained in the sector of angle 2𝜋 with respect to
distance to the crack-tip [2]. A square-root singularity takes place, and no logarithmic terms occur
in the asymptotic expansion. Integral formulas calculating stress intensity factors are rigorously
calculated.
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This work explores the generalized Gerdjikov-Ivanov equation describing propagation of pulses
in optical fiber in the form,

𝑖 𝑞𝑡 + 𝑎 𝑞𝑥𝑥 + 𝑏 |𝑞|4 𝑞 + 𝑖 𝑐 𝑞2 𝑞*𝑥 = 𝑖
[︀
𝛼 𝑞𝑥 + 𝜆 (|𝑞|2𝑚 𝑞)𝑥 + 𝜇 (|𝑞|2𝑚)𝑥 𝑞

]︀
, (1)

where 𝑞(𝑥, 𝑡) is a complex-valued function, which describes the wave profile, 𝑎, 𝑏, 𝑐, 𝛼, 𝜆 and 𝜇
are parameters of the mathematical model, where 𝑎 is responsible for group velocity dispersion,
𝑏 is the coefficient of quintic nonlinearity, 𝛼 is the coefficient of intermodal dispersion, 𝑐 and 𝜇
are coefficients of nonlinear dispersion and 𝜆 is the coefficient of the self-steepening term for short
pulses.

Equation (1) is a well-known nonlinear partial differential equation for description of optical
solitons in fiber, especially in photonic crystal fibers. This equation does not pass the Painlevé test
and the Cauchy problem for Equation (1) cannot be solved by the inverse scattering transform in
the general case. In this regard, analytical solutions for the generalized Gerdjikov-Ivanov equation
are found using traveling wave variables. However, at 𝛼 = 𝜆 = 𝜇 = 0 Equation (1) is an integrable
equation, which has been shown in a paper [1].

Equation (1) has been considered at 𝑚 = 1 in a number of articles. In the paper [2] the authors
have generated new optical soliton solutions to the perturbed Gerdjikov Ivanov equation which have
been detected by means of the extended direct algebraic method. The perturbed Gerdjikov-Ivanov
equation which describes the dynamics of the soliton in an optical fiber has been investigated in
the paper [3].

In this work we obtain the nonlinear ordinary differential equation corresponding to Equation
(1), periodic and solitary wave solution of this ordinary differential equation at m = 1 and m
= 2 and in the case of arbitrary value m exact solutions in the form of optical solitons. Phase
portraits of an ordinary differential equation corresponding to the partial differential equation
under consideration are constructed and have presented the classification of the phase portraits
corresponding to this equation.

Three conservation laws for the generalized equation corresponding to power conservation,
moment and energy are found by the method of direct transformations.

Conservative densities corresponding to optical solitons of the generalized Gerdjikov - Ivanov
equation, have been received. The conservative quantities obtained have not been presented before
in the literature, to the best of our knowledge. These theoretical results obtained can be useful for
practical applications due to them being helpful in testing, whether numerical schemes for partial
differential equations are conservative.

This research was supported by Russian Science Foundation Grant No. 23-41-00070,
https://rscf.ru/en/project/23-41-00070/.
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In this talk, the compatible theory of differential invariants will be discussed and a class of
exact solutions is obtained for non-homogeneous quasi-linear hyperbolic system of partial differen-
tial equations (PDEs) describing rate-type materials; these solutions exhibit genuine non-linearity
that leads to the formation of discontinuities such as shocks and rarefaction waves. For certain
non-constant and smooth initial data, the solution to the Riemann problem is presented providing
a complete characterization of the solutions.
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Nowadays, coupled partial differential equations have been employed in various fields of en-
gineering and applied sciences. Coupled Burgers’ equations are coupled PDEs, and describe the
approximation theory of flow through a shock wave traveling in a viscous fluid. In this research
article, the Lie symmetry analysis of the system was determined, and symmetry reductions were
obtained from the coupled Burgers’ equations. The authors generated travelling wave solutions
with the aid of translation symmetries in time and space. The results obtained by using the “Lie
symmetry analysis” method are compared with others. In order for better understanding, the
analytical solutions are graphically depicted.
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The Magnetohydrodynamics (1+1)–dimension equation with force and force-free term is anal-
ysed with respect to its point symmetries[1, 2]. Interestingly, it reduces to an Abel’s Equation of
the second kind and under certain conditions to equations specified in Gambier’s family[3]. The
symmetry analysis for the force-free term leads to an Euler’s Equation and to a system of reduced
second-order odes for which the singularity analysis is performed to determine their integrability.
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In this report, we consider the spatial motions of a boundless collisionless electron Vlasov-
Poisson gas in three-dimensional (3D) Cartesian coordinate system:

𝜕𝑓

𝜕𝑡
+ 𝑣𝑖

𝜕𝑓

𝜕𝑥𝑖
+
𝜕𝜙

𝜕𝑥𝑖

𝜕𝑓

𝜕𝑣𝑖
= 0,

𝜕2𝜙

𝜕𝑥2𝑖
= 4𝜋(

∫︁
R3

𝑓(x,v, 𝑡)𝑑v − 𝑛𝑒). (1)

Here, 𝑓 ≥ 0 denotes the distribution function of electrons (for reasons of convenience, their charges
and masses are assumed to be equal to unity); 𝑡 is time; x = (𝑥1, 𝑥2, 𝑥3) and v = (𝑣1, 𝑣2, 𝑣3)
denote coordinates and velocities of electrons; 𝜙(x, 𝑡) is the potential of self-consistent electric
field; 𝑑𝑣 ≡ 𝑑𝑣1𝑑𝑣2𝑑𝑣3; 4𝜋𝑛𝑒 ≡ const > 0 is the electrons density in some spatial static state of
global thermodynamic equilibrium. We suppose that the distribution function 𝑓 approaches zero
asymptotically as |v| → ∞ and/or |x| → ∞, and this function along with the potential 𝜙 are
periodic in argument x or approach zero asymptotically as |x| → ∞ too.

It is assumed that mixed problem (1) has the following exact stationary solutions:

𝑓 = 𝑓0(v) ≥ 0, 𝜙 = 𝜙0 ≡ const;

∫︁
R3

𝑓0(v)𝑑v = 𝑛𝑒. (2)

The aim of this report is to prove an absolute linear instability for 3D states (2) of dynamic
(local thermodynamic) equilibrium of the boundless collisionless electron Vlasov-Poisson gas with
respect to small spatial perturbations 𝑓 ′(x,v, 𝑡) and 𝜙′(x, 𝑡):

𝜕𝑓 ′

𝜕𝑡
+ 𝑣𝑖

𝜕𝑓 ′

𝜕𝑥𝑖
+
𝜕𝜙′

𝜕𝑥𝑖

𝜕𝑓0

𝜕𝑣𝑖
= 0,

𝜕2𝜙′

𝜕𝑥2𝑖
= 4𝜋

∫︁
R3

𝑓 ′(x,v, 𝑡)𝑑v.

(3)

To achieve this aim, a transition from kinetic equations (1) which describe the 3D motions of
electron gas under study to an infinite system of relations similar to the equations of isentropic flows
of a compressible fluid medium in the “vortex shallow water” and the Boussinesq’s approximations
was carried out. In the course of instability proof, the well-known sufficient Newcomb-Gardner-
Rosenbluth condition for stability of spatial states (2) of dynamic (local thermodynamic) equilib-
rium in relation to one incomplete unclosed partial class of small 3D perturbations was conversed.
Also, some linear ordinary differential second-order inequality with constant coefficients was ob-
tained for the Lyapunov functional. The a priori exponential lower estimate for growth of small
spatial perturbations (3) follows from this inequality when the sufficient conditions found in this
report for linear practical instability of the considered dynamic (local thermodynamic) equilibrium
states are satisfied. Since the obtained estimate was deduced without any additional restrictions
on the dynamic equilibrium states under study, then, thereby, the absolute linear instability of
3D states (2) of dynamic (local thermodynamic) equilibrium of the boundless collisionless elec-
tron Vlasov-Poisson gas with respect to small spatial perturbations (3) was proved. At last, the
analytical examples of stationary solutions (2) and growing perturbations (3) were constructed.

One of the authors, Liu Y., gratefully acknowledges financial support by CSC grant.
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In order to prove an absolute instability for one subclass of three-dimensional (3D) dynamic
equilibria of hydrogen Vlasov-Poisson plasma in relation to small spatial perturbations, we rely
on the fact that in the electrostatic approximation, when there is no the magnetic field, and the
electric field is self-consistent, the plasma dynamics is described by the Vlasov-Poisson equations
[1]. These equations characterize a collisionless motion of electrons and their interaction with each
other through the Coulomb repulsive forces on the background of a uniform distribution of ions
inside the physical continuum.

The Vlasov-Poisson mathematical model for a boundless electrically neutral hydrogen plasma
in the electrostatic approximation without collisions in a 3D Cartesian coordinate system can be
written in the following index form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕𝑓

𝜕𝑡
+ 𝑣𝑖

𝜕𝑓

𝜕𝑥𝑖
− 𝜕𝜙

𝜕𝑥𝑖

𝜕𝑓

𝜕𝑣𝑖
= 0,

𝜕2𝜙

𝜕𝑥2𝑖
= 4𝜋(1 −

∫︁
ℛ3

𝑓(𝑥𝑖, 𝑣𝑖, 𝑡) 𝑑𝑣1𝑣2𝑣3),

𝑓 = 𝑓(𝑥𝑖, 𝑣𝑖, 𝑡) ≥ 0, 𝑓(𝑥𝑖, 𝑣𝑖, 0) = 𝑓0(𝑥𝑖, 𝑣𝑖).

(1)

Here, 𝑓 – electron distribution function; 𝑥𝑖, 𝑣𝑖 (𝑖 = 1, 2, 3) – electron coordinates and velocities; 𝑡 –
time; 𝜙 – the potential of self-consistent electric field; 𝑓0 – initial data.

Mathematical model (1) of the hydrogen Vlasov-Poisson plasma has the following exact sta-
tionary solutions:

𝑓 = 𝑓0(𝑣𝑖), 𝜙 = 𝜙0 ≡ const;

∫︁
ℛ3

𝑓0(𝑣𝑖)𝑑𝑣1𝑑𝑣2𝑑𝑣3 = 1. (2)

In the process of proving instability, we use a hydrodynamic substitution of independent vari-
ables to transform the Vlasov-Poisson equations (1) into an infinite system of 3D equations which
are similar to the equations for isentropic flows of compressible fluid medium in the “vortex shal-
low water” and the Boussinesq approximations [2]. After that, these new defining equations are
linearized in the vicinity of their exact stationary solutions. The direct Lyapunov method [2] is
considered to construct a priori exponential estimate from below for one partial class of small
spatial perturbations of exact stationary solutions to new defining equations, which grow over time
and are described by the field of Lagrangian displacements [2]. As a result, the Newcomb-Gardner-
Rosenbluth sufficient condition [3] for linear stability of exact stationary solutions (2) is reversed,
its formal character is revealed, and, thus, absolute instability for these solutions is proved. Also,
the sufficient conditions for linear practical instability of exact stationary solutions (2) to mathe-
matical model (1) are found, and their constructive nature is discovered. At last, the analytical
examples of solutions (2) and growing perturbations are constructed. So, the results obtained can
be applied to the development of devices designed to perform the controlled thermonuclear fusion.
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Wave propagation without reflection is of great importance for applications because it allows
energy to be transmitted over long distances. The paper discusses a way to reduce the equations
of the linear theory of shallow water to a modified Euler-Poisson-Darboux equation with a variable
coefficient in the form of an inverse hyperbolic sine, the solution of which is represented as a
composition of traveling waves. Due to this, 2 counting series of non-reflective bottom profiles
were obtained. The first series is bounded everywhere, and infinitely smoothly connects the cut
with the constant at infinity. The second series, on the contrary, makes the transition from depth
to constant. The analysis of the dynamics of the obtained wave fields will be discussed in this
report.

The author I.E. gratefully acknowledge financial support by the RSF grant 23-77-01074.
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We use the non-commutative (associative) algebra of sixteen-component space-time sedeons [1]
to describe fields with non-zero mass of quantum. This algebra takes into account the symmetry of
physical quantities with respect to spatial and temporal inversion and allows formulating equations
in compact and highly symmetrical form.

The description is based on wave equations using space-time operators of the following form
⌢

∇ = 𝑖e1𝜕 − e2∇ − 𝑖e3𝑚, where 𝑚 is the normalized mass of the quantum. In particular, the
second-order wave equation for the sedeonic field potential W̃ is written in compact form as
⌢

∇
⌢

∇W̃ = J̃. This sedeonic equation can be reformulated in equivalent form as the system of
Maxwell-like equations

𝜕𝑔1 +
(︁
∇⃗ · �⃗�1

)︁
−𝑚𝑔4 = 𝜌1 ,

𝜕𝑔2 +
(︁
∇⃗ · �⃗�2

)︁
+𝑚𝑔3 = 𝜌2,

𝜕𝑔3 +
(︁
∇⃗ · �⃗�3

)︁
−𝑚𝑔2 = 𝜌3,

𝜕𝑔4 +
(︁
∇⃗ · �⃗�4

)︁
+𝑚𝑔1 = 𝜌4,

𝜕�⃗�1 + ∇⃗𝑔1 −
[︁
∇⃗ × �⃗�2

]︁
+𝑚�⃗�4 = −�⃗�1,

𝜕�⃗�2 + ∇⃗𝑔2 +
[︁
∇⃗ × �⃗�1

]︁
−𝑚�⃗�3 = −�⃗�2,

𝜕�⃗�3 + ∇⃗𝑔3 +
[︁
∇⃗ × �⃗�4

]︁
+𝑚�⃗�2 = −�⃗�3,

𝜕�⃗�4 + ∇⃗𝑔4 −
[︁
∇⃗ × �⃗�3

]︁
−𝑚�⃗�1 = −�⃗�4,

where 𝑔𝑘 and �⃗�𝑘 are scalar and vector field strengths and 𝜌𝑘 and �⃗�𝑘 are sources.
It allows us to formulate the relations for the field energy similar to Poynting’s theorem in

electrodynamics and apply the classical description of the interaction of particles - the sources of
this field. The second-order wave equations can be used to describe baryon fields. As an example,
the interaction of two point baryons (participating in the strong interaction) is considered in terms
of the overlap of their scalar and vector fields [2].

On the other hand, a first-order wave equation
⌢

∇W̃ = Ĩ can be used to describe lepton fields.
As an example, we consider the interaction of lepton sources caused by the overlap of scalar fields
[3].

The gauge (gradient) invariance of the equations for massive fields is also discussed.
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In this work, certain ecological models pertaining to various real life problems, such as, popu-
lation rate of deer in a forest, fish population rate by considering harvesting are studied using the
techniques available in the context of dynamical systems. Firstly, the equilibrium of this models
are obtained and the behavior of general solution around this equilibrium solution are studied
thoroughly. The concept of bifurcation is used to determine the physical significance of solutions
obtained by the standard procedures[1].

REFERENCES

1. Hirsch M. W., Smale S., and Devaney R. L. Differential equations, dynamical systems, and an intro-
duction to chaos, Academic press, (2012).



Moshkin N. P. 45

Modeling of ”mineral particle-bubble” dynamic in viscous fluid

N.P. Moshkin

Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy
of Sciences, Russia; nikolay.moshkin@gmail.com

The dynamics of a “liquid-bubble-particle” agglomerate in a viscous liquid is a very complicated
non-linear, and non-stationary hydrodynamic process. The oscillation of a heavy mineral particle
attached to the surface of the gas bubble in the viscous liquid is considered. A bubble that makes
surface oscillations and a particle with mass are considered as a unique mechanical system. It is
assumed that the main forces determining the interaction of these objects are the inertial force
due to surface fluctuations of the gas bubble and the capillary adhesion force. Nonsteady equa-
tions describing the dynamics of the mechanical ”liquid-bubble-particle” system in a non-viscous,
incompressible fluid are obtained using Lagrangian mechanics. Viscosity influence is accounting by
viscous dissipation taking into account. Dynamic behavior of the flotation of the ”bubble-particle”
system under various initial disturbances of the bubble surface and particle mass are considered.
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We find the twisted extension of the symmetry algebra of the 2D Euler equation in the vor-
ticity form and use it to construct new Lax representation for this equation. Then we consider
the transformation Lie-Rinehart algebras generated by finite-dimensional subalgebras of the sym-
metry algebra and employ them to derive a family of Lax representations for the Euler equation.
The family depends on functional parameters and contains a non-removable spectral parameter.
Furthermore we exhibit Lax representations for the reduced magnetohydrodynamics equations (or
the Kadomtsev-Pogutse equations), the ideal magnetohydrodynamics equations, and the quasi-
geostrophic two-layer model equations.
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Let’s consider the generalized nonlinear second order Hunter–Saxton–Calogero partial differen-
tial equation

𝑢𝑡𝑥 = 𝑢𝑢𝑥𝑥 +𝐺(𝑢𝑥), (1)

where 𝑢(𝑡, 𝑥) is an unknown function, 𝑡 and 𝑥 are the time and spatial coordinates, respectively.
This equation is arised in the theory of control of liquid crystals and in the control of unsteady gas
flows [1]. We use the methods developed in [2].

Let 𝐽1R2 be a 5-dimensional space of 1-jet smooth functions with two independent variables
𝑡, 𝑥. A contact structure is specified on this space—the Cartan distribution [3]. According to the
approach of V.V. Lychagin [4], a Monge–Ampere type equation can be considered as an effective
differential 2-form 𝜔 on the space 𝐽1R2. The classical solution of such an equation is a function on
whose 1-jet the 2-form 𝜔 is canceled, and the multivalued solution is the maximal integral manifold
𝐿 of the Cartan distribution such that 𝜔|𝐿 = 0.

Equation (1) in the space 𝐽1R2(𝑡, 𝑥, 𝑢, 𝑝1, 𝑝2) corresponds to the effective differential 2-form

𝜔 = −2𝐺(𝑝2)𝑑𝑡 ∧ 𝑑𝑥+ 𝑑𝑡 ∧ 𝑑𝑝1 − 𝑑𝑥 ∧ 𝑑𝑝2 − 2𝑢𝑑𝑡 ∧ 𝑑𝑝2.

To solve the problem of contact linearization of the Monge–Ampere equations A.G. Kushner [5]
introduced two differential 2-forms on the space 𝐽1R2, which he called Laplace forms. This name
is justified by the fact that the coefficients of these forms, written for linear hyperbolic equations,
exactly coincide with the known Laplace invariants ℎ and 𝑘.

In our case, one of the Laplace forms is is equal to zero if and only if 𝐺(𝑝2) = 𝑝22+2𝛼1𝑝2+𝛼0, and
the other does not vanish. In this case, equation (1) can be linearized using contact transformations.

Applying the Legendre transform

Φ : (𝑡, 𝑥, 𝑢, 𝑝1, 𝑝2) → (𝑡,−𝑝2,−𝑥𝑝2 + 𝑢, 𝑝1, 𝑥),

we get a linear equation

𝑢𝑡𝑥 + (𝑥2 + 𝛼1𝑥+ 𝛼0)𝑢𝑥𝑥 + 𝑥𝑢𝑥 − 𝑢 = 0. (2)

The equation (2) is solved by the cascade integration method. Knowing the linear solution and
applying the inverse contact transformations the original equation was integrated. As a result, the
general exact multivalued solution to the Hunter–Saxton–Calogero equation (1) has been founded.
The resulting solutions were visualized.

This work was supported by the Russian Science Foundation (grant no. 23-21-00390).
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The study reveals the system of nonlinear fractional order Vander Pol equations ( FOVDP)
with various conditions are investigated with the method of directly defining inverse mapping
(MDDiM). Finding the solutions by using MDDiM is a novel idea and the first time illustrated
for the system of nonlinear FOVDP. It is emphasized by residual error (i.e, 10−3 to 10−17) and
can easily derive deformation terms by spending very low CPU time. Based on the proposed
method, the convergence rate, accuracy, and efficiency of the governing equations are demonstrated,
which exhibit meaningful structures and advantages in science and engineering. The effects of the
variation of all physical parameters are discussed in detail lucidly.
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We present several techniques for solving differential equations based on the existence of solvable
structures [2, 7, 1] and 𝒞∞-structures [4]-[6]. Both concepts are established in a more general
framework than that of differential equations, since they provide a systematic integration procedure
for involutive distributions of vector fields [8].

Once a solvable structure has been determined for an involutive distribution 𝒵, its elements
can be used to construct a sequence of differential 1-forms. Such 1-forms define a succession of
completely integrable Pfaffian equations, each defined in a space of dimension one unit smaller than
the previous one. These Pfaffian equations can be (locally) solved by quadrature. The successive
integration of these equations leads, in the last stage, to the complete integration of the initial
distribution 𝒵.

When the elements of a solvable structure are not imposed to be symmetries but 𝒞∞-symmetries
[3], we obtain a larger structure, which has been called 𝒞∞-structure [4]. Once a 𝒞∞-structure is
known, the integration of the distribution is also achieved by solving at each stage a completely
integrable Pfaffian equation. However, the 1-forms defining the Pfaffian equations, unlike in the
case of solvable structures, need not be closed. In this scenario, the so-called symmetrizing factors
and their relationships with relative integrating factors, recently investigated in [5], are of great
use in facilitating the search for primitives at each stage.

Illustrative examples of how both objects (solvable structures and 𝒞∞-structures) can be found
and used to find exact solutions of different problems modeled by differential equations [6] are also
presented.

The authors gratefully acknowledge financial support by Junta de Andalućıa (Spain) Grant for
Excellence Project ProyExcel 00780 and for the research group FQM–377.
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A classical theorem of Lie and Tresse states that the algebra of differential invariants of a Lie
group or (suitable) Lie pseudo-group action is finitely generated. I will present a fully symbolic,
constructive algorithm, based on the equivariant method of moving frames, that reveals the full
structure of such non-commutative differential algebras, and, in particular, pinpoints generating
sets of differential invariants as well as their differential syzygies. Several applications and outstand-
ing issues will be discussed, including equivalence and symmetry detection in image processing,
and some surprising results in classical surface geometries.
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Cancer is one of the most deadly diseases among humanity in great part due to the large amount
of variables which have to be taken into account in its development and dynamics. Mathematical
modelling efficacy and usefulness in providing enough information from which to derive ideas for
tumor treatment. This study focuses on the exact analytical solutions of the some tumor models
by using artificial Hamiltonian methodology which is a novel algorithm to solve dynamical systems
of first-order ordinary differential equations which can be written as a non-standard or partial
Hamiltonian system. This method provides an important process to compute the exact solutions of
coupled nonlinear systems of ordinary differential equations (ODEs). In this research, our main goal
is to analyze two-dimensional nonlinear dynamical systems which are the mathematical models for
the evolution of tumor volumes after treatments. Application of the artifical Hamiltonian method
to the tumor models enable to determine the first integrals which provides to obtain analytical
solutions directly. In addition, graphical representations of the models are presented for the some
specifial paremeters.
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We propose a novel method for the linearization of second-order ordinary differential equations.
We extend the concept of linearization based on the symmetries to the framework of geometry
by using the Eisenhart lift. We establish a new approach for the construction of solutions for
differential equations. A demonstration of this approach is the linearization of the Ermakov-Pinney
equation and that of another non-maximal symmetric equation.
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A link between first-order ordinary differential equations (ODEs) and 2-dimensional Rieman-
nian manifolds is explored. Let 𝑈 be an open subset of R2 with coordinates (𝑥, 𝑢), and consider a
first-order ODE

𝑑𝑢

𝑑𝑥
= 𝜑(𝑥, 𝑢), (1)

where 𝜑 is a smooth function defined on 𝑈 . We associate with equation (1) a Riemannian metric
𝑔 defined on 𝑈 , and explore some properties of the resulting surface (𝑈, 𝑔). We have found a
connection between Jacobi fields of this surface and Lie point symmetries of the ODE. Also, it is
proven that if the corresponding surface is flat (zero Gaussian curvature), then the ODE can be
integrated by quadratures.

Next, we investigate deformations of the surface (𝑈, 𝑔). We consider Riemannian metrics {𝑔𝜖}
defined on 𝑈 , indexed by a smooth function 𝜖 ∈ 𝒞∞(𝑈), and such that 𝑔0 = 𝑔. This deformation
is defined to preserve specific features of 𝑔 that are relevant to the ODE.

We establish a relationship between certain Jacobi type fields on the deformed surface and
the integrability of the ODE, and we show that there is a class of vector fields, beyond Lie point
symmetries, which are useful for solving first-order ODEs. As a result, it is concluded that the
deformation into a constant curvature surface leads to the integrability by quadratures of the given
ODE. In particular, the deformation into a zero curvature surface corresponds to the finding of an
integrating factor.
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A pair of joint solutions of analogs of time Schrodinger equations which defined by the Hamilto-
nians of 𝐻3+1+1

𝑠𝑘
(𝑠1, 𝑠2, 𝑞1, 𝑞2, 𝑝1, 𝑝2)(𝑘 = 1, 2) of the Hamiltonian system 𝐻3+1+1, which is written

out in Kimura’s article [1] are built. These analogues of the Schrodinger equations are linear
evolutionary equations with times 𝑠1 and 𝑠2, each of which depends on two spatial variables.

2 × 2 matrix joint solutions of scalar linear evolutionary equations are constructed Ψ′
𝑠𝑘

=

𝐻3+1+1
𝑠𝑘

(𝑠1, 𝑠2, 𝑥1, 𝑥2,
𝜕

𝜕𝑥1
, 𝜕
𝜕𝑥2

)Ψ with times 𝑠1 and 𝑠2, which are analogs of the Schrodinger time

equations. These equations correspond to the Hamiltonian system 𝐻3+1+1, being a representative
of the hierarchy of degenerations of the isomonodromic Garnier system described by H. Kimura
(see [1]) in 1986. The constructed solutions are explicitly expressed in terms of joint solutions
of matrix linear pairs of IDM from the article [2]. The condition for the compatibility of such
pairs is just the Hamiltonian ODES corresponding to the Hamiltonians of the system 𝐻3+1+1. A
replacement linking matrix solutions of analogs of the Schrodinger time equations defined by two
forms (rational and polynomial in coordinates) of the 𝐻3+1+1 system is given. This substitution
is a quantum analogue of the well-known canonical transformation connecting the Hamiltonian
equations of the system 𝐻3+1+1 in two given forms.
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Nerve axon is a biophysical process that is complex and is affected by physical, chemical, and
thermal changes [1]. A multidiscipline study is needed to understand the phenomena. Historically,
Hodgkin-Huxley model [2, 3], Fitz-Hugh-Nagumo model [4], etc. are the most known which are
focused on the electrical part of the nerve pulse. However, the morphology of axons, whether
they are myelinated or not, is important for pulse propagation. We will focus on the model that
simulates the mechanical wave expressing the deformation in the axon wall, considering the axon
morphology and electrical structure so it is assumed as biomembrane. HeimburgJackson [5, 6, 7, 8]
proposed the model that is a Boussinesq-type equation. Considering the analytical methods,
explicit solutions of the model are proposed and the changes in wave profile are seen clearly.
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Helical flows are characterized by the alignment of the velocity vector and its curl vector. This
class of flows was initially discovered by I.S. Gromeka in 1981 and independently by E. Belrami in
1989. Gromeka and Beltrami described stationary helical flows in ideal incompressible fluids. In
1896, V.A. Steklov identified helical flows in viscous fluids, which are inherently non-stationary.

One remarkable property of helical flows is the presence of the Bernoulli integral, even though
the fluid motion is non-potential. This presentation contains known examples of helical flows
obtained by O.A. Bogoyabvlenskij, V.A. Galkin, G.B. Sizykh, and others. Additionally, new
solutions describing plane and axi-symmetric analogs of helical flows will be presented. Lastly,
solutions of this kind for second-order fluids will be discussed.
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A connection had been noted by one of us (AQ) between Singularity Analysis and Lie Symmetry
Analysis, in that both provide [1] remarkable new results arising from singularities in the complex
plane for each independent variable. For the first it was used directly. For the second it arose
from the use of complex methods for Symmetry Analysis. That work had focused on the case
of one independent variable. It was pointed out that for ordinary differential equations Painlevé
analysis provides classes on the basis of the nature of the singularities, while Lie Symmetry Analysis
provides classes on the basis of the infinitesimal symmetries of the differential equations. As such,
it would be worthwhile to explore the symmetry classification of the Painlevé classes to obtain the
solutions for the Painlevé classes directly. This is done here.
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We study the classication of invariant solutions of a class of nonlinear wave equations using Lie
symmetry analysis and the underlying optimal systems of subalgebras. We propose a classication
of Lie generators via optimal systems for four cases that arise therein. These optimal systems
are presented in a convenient tree leaf diagram. Corresponding to each class, complete symmetry
reductions and the invariant solutions are presented. To the best of our knowledge, this

classication of optimal systems is new and do not appear in the literature. Our results also lead
to the establishment of the local conservation laws corresponding to each conserved vector via the
multiplier approach.
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Lie–Hamilton systems are characterized by the property of admitting a nonlinear superposition
principle, that enables to describe the general solution in terms of a certain number of particular
solutions and significant constants. The additional geometrical compatibility structure allows a
systematic construction of the constants of the motion. However, depending on the corresponding
Vessiot–Guldberg algebra, as well as a suitable realization in terms of vector fields, LH systems
can also be analyzed for their integrability (by quadratures), using the Lie symmetry method and
local diffeomorphisms. The classification of LH systems on the real plane is revisited from this
point of view, determining conditions that enable us to find the general solution without need
of superposition rules. By means of examples, the problem of the integrability of their quantum
deformations, that do no more formally correspond to LH systems, is also explored.

The author gratefully acknowledges financial support by the Agencia Estatal de Investigación
(Spain) under grant PID2019-106802GB-I00/AEI/10.13039/501100011033.
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MIFT, Università degli Studi di Messina, Italy ; alerizzo@unime.it.

The idea of commuting flows plays a key role in the theory of Hamiltonian Systems. In fact, if a
Hamiltonian System admits infinitely many commuting flows then it has the integrability property.
It is known that 2 components Hamiltonian quasilinear systems , i.e. hydrodynamic type systems
of the form (︂

𝑢
𝑣

)︂
𝑡

=

(︂
0 1
1 0

)︂
𝜕𝑥

(︂
ℎ𝑢
ℎ𝑣

)︂
,

(︂
𝑢
𝑣

)︂
𝑦

=

(︂
0 1
1 0

)︂
𝜕𝑥

(︂
𝑓𝑢
𝑓𝑣

)︂
(1)

commute if and only if
ℎ𝑢𝑢𝑓𝑣𝑣 − ℎ𝑣𝑣𝑓𝑢𝑢 = 0. (2)

Avoiding trivial cases, the previous equation can be rewritten under the form of the wave equation
with non constant speed

𝑓𝑣𝑣 − 𝑎2(𝑢, 𝑣)𝑓𝑢𝑢 = 0, (3)

where we set 𝑎2(𝑢, 𝑣) =
ℎ𝑣𝑣
ℎ𝑢𝑢

.

Motivated by this viewpoint, we apply the reduction procedure of differential constraints to obtain
a complete set of solutions of such an equation for some fixed velocities 𝑎2(𝑢, 𝑣). As a result, we
present some examples of Hamiltonian integrable systems (as the shallow water equations) with
relative symmetries, conserved quantities and solutions.
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The paper studies algorithms for solving applied problems of estimating the domains of solu-
tions of differential equations. Such applied problems arise when estimating the practical stability
of movements over a finite time interval, when determining the reachability areas of controlled sys-
tems, when estimating the survivability areas of controlled systems, when calculating guaranteed
(non-probabilistic) boundaries of zones of dangerous states of technical systems, when calculating
threshold values of parameters of technical systems, which correspond to the boundaries of dan-
gerous zones, when computing the maximum deviations of movements to control the entry of the
system trajectory into the dangerous zone. In the listed problems, only estimates of their ranges
of values are known for some of the parameters. Then the sets of solutions to the ODE system
with perturbing (controlling) actions are determined

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦, 𝑢), 𝑢 ∈ 𝑈, 𝑦0 ∈ 𝑌0, (1)

where 𝑦− is the 𝑛− dimensional phase vector of the system in the Euclidean space 𝑅𝑛, 𝑢− the
vector of perturbing (controlling) actions, 𝑈− the compact in the Euclidean space 𝑅𝑝 , and 𝑌0 the
initial data areas. This leads to the emergence of sets of solutions. The set of solutions to problem
(1) depending on the perturbing parameter

𝑌 (𝑡) = 𝑌 (𝑡, 𝑌0, 𝑈) =
⋃︁

𝑦0∈𝑌0

𝑦(𝑡, 𝑦0, 𝑈) = {𝑦 : 𝑦(𝑡0) ∈ 𝑌0,∀𝑡 ≥ 0,
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦, 𝑢)} (2)

is called a tube of trajectories and, in the general case, forms a rather complicated structure.
The study of the set of solutions (2) is complicated by the fact that, in addition to stable

solutions of system (2) , the set of trajectories may contain singular points, separatrices, and
limit cycles. All this is the reason for the difficult to predict behavior of the trajectories of the
solution sets. For this and other reasons, this set, in most cases, cannot be calculated. Instead, we
compute approximations to this set that include a set of solutions. The complexity of solving these
problems lies in the fact that most methods for estimating the sets of solutions of ODE systems (or
computing the upper and lower bounds of the solutions) lead to a strong growth of the boundaries
of these sets of solutions.

To eliminate most of the difficulties in implementing methods for estimating sets of solutions,
it is proposed to use symbolic formulas - these are either combinations of signs of operations,
constants and variables that have an independent meaning . These formulas indicate an algorithm
for computing the value of an expression, or a record of an expression to determine the range of
values of a value through its parameters. It is useful to regularize the estimates of the boundaries of
the solution sets by passing to a linear approximation of the original system. This helps to overcome
in some cases the growth of solution set boundaries [1], [2]. Nontheless, when constructing two-
sided estimates (inclusions) of sets of solutions to ODE systems, changes appear in the coefficients
of the ODE system, changes in the dimension of the problem, and some other changes. The purpose
of the article is to establish which of the reasons or combinations of reasons are the basis for the
increase in the boundaries of estimates.
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We consider the Euler-Poisson equations

𝜕𝑛

𝜕𝑡
+ div(𝑛V) = 0,

𝜕V

𝜕𝑡
+ (V · ∇)V = 𝑘∇Φ + 𝐹𝑝 + 𝐹𝑓 + 𝐹𝑣,

∆Φ = 𝑛− 𝑛0,

where 𝑛 is the density, 𝑛0 = const ≥ 0 is the density background, V is the velocity of particles,
Φ is a force potential, 𝑘 = const, 𝑘 > 0 corresponds to the repulsive force (the models of plasma
and semi-conductors), 𝑘 < 0 corresponds to the attractive force (the models of astrophysics). Here
𝐹𝑝, 𝐹𝑓 , 𝐹𝑣 are pressure, friction, and viscosity, respectively, which, depending on the model, can
be taken into account or neglected.

It is well known that the solution to the Cauchy problem for the Euler-Poisson system with-
out any additional factors, as a rule, loses smoothness in a finite time; moreover, a strong delta
singularity is formed in the density component.

Our main question is: can we delay, remove or weaken the singularity using pressure, friction
or viscosity?

We consider the pressure term as 𝐹𝑝 = −𝛼∇𝑝(𝑛)

𝑛
, 𝑝(𝑛) =

1

𝛾
𝑛𝛾 , 𝛾 > 1, 𝛼 = const ≥ 0 friction

term as 𝐹𝑓 = −𝜈(𝑛)V, 𝜈(𝑛) ≥ 0, and viscosity term as 𝐹𝑣 = 𝜇∆V, 𝜇 = const ≥ 0 and restrict
ourselves to the case of a one-dimensional model in space.

We show that

• the pressure generally does not eliminate or delay a blowup, however changes the type of
singularity to a weaker one;

• Constant friction delays the formation of a singularity at fixed initial data; for fixed initial
data, one can choose a friction coefficient large enough to guarantee global smoothness of the
solution, but for arbitrarily strong constant friction, one can find initial data that generates
a finite-time singularity [1];

• one can find 𝜈(𝑛) such that the solution remains smooth for all 𝑡 > 0 [2];

• an arbitrary small constant viscosity guarantees global smoothness of the solution;

• There are examples of viscosity that depends on the solution and does not prevent the
formation of a singularity.

We discuss also the influence of friction in the multidimensional case [3].
Supported by RSF grant 23-11-00056 through RUDN University.
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The Levinson-Smith equation �̈�+𝑓(𝑥, �̇�)�̇�+𝑔(𝑥) = 0 was introduced in [1] as a generalization of
the classical Liénard equation �̈�+ 𝑓(𝑥)�̇�+ 𝑔(𝑥) = 0. In the Levinson-Smith equation, the function
𝑓(𝑥, �̇�) represents the damping term which, in contrast to the Liénard equation, can depend on
the derivative �̇�. The qualitative behavior of solutions to the Levinson-Smith equation has been
widely studied in the recent literature. For instance, some conditions under which the equation
admits periodic solutions were established in [1, 2].

In this talk the theory of 𝜆-symmetries [3] is applied to the Levinson-Smith equation with
the goal of determining exact general solutions for some families of equations. As a result of the
study performed, a family of equations that admits a 𝜆-symmetry of a specific form is deduced.
Moreover, the 𝜆-symmetry-based integration method leads to the general exact solution of the
family of equations in terms of the solution to a separable first-order equation. Remarkably, the
obtained family includes some cases of the general Liénard-type equation, that appears often in
Physics and Biology [4], and contains equations that only admit 𝜕𝑡 as Lie point symmetry [5, 6]
for which the classical Lie reduction method fails in providing the exact general solution.

The authors gratefully acknowledge financial support from Junta de Andalućıa (Spain) by
means of the project ProyExcel 00780, as well as from Universidad de Cádiz through ”Plan Propio
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Abstract

We shall discuss a study of homogenization problems for elliptic equations of the form{︃
L𝛿𝑢𝛿 + 𝜆𝑢𝛿 = 𝑓𝛿 in 𝐷,

𝑢 = 0 on 𝜕𝐷,

where 𝛿 > 0, 𝜆 ∈ R, 𝐷 is a bounded open set in R𝑑, and 𝑓𝛿 ∈ 𝐻−1(𝐷). The operator L𝛿𝑢 =
−div

(︀
𝐴𝛿∇𝑢+ 𝐶𝛿𝑢

)︀
+𝐵𝛿∇𝑢+𝑘𝛿𝑢 driven by uniformly bounded diffusion coefficients 𝐴𝛿, where

drifts 𝐵𝛿, 𝐶𝛿 and potential 𝑘𝛿 are possibly unbounded. An application to homogenization of
the corresponding diffusion processes will be demonstrated. This talk is based on joint work
with Toshihiro Uemura (Kansai University).

keywords: Homogenization, diffusion processes, singular drifts, unfolding method
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Equations of solid mechanics have been studied by the methods of group analysis for more than
50 years [1].

In this period, new classes of exact solutions were obtained and the structure of the study-
ing equations was investigated. The exact solutions give possibility to solve the boundary value
problems by semi-inverse methods.

Solving of boundary value problems of the deformable solid mechanics equations was started in
the works [2, 3]. Investigations in this area revealed that the boundary value problems of systems
of elliptic and hyperbolic equations generally can be solved effectively with the use of conservation
laws (see [4, 5] and the references).

The present work is devoted to a review of the methods of solving of the boundary value
problems for hyperbolic and elliptic systems of the deformable solid mechanics equations.
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In fluid dynamics, a flow created by a converging or diverging channel with a source or sink
at the point of intersection of the two plane walls is represented by the Jeffery-Hamel (J-H) flow
equation. The objective of this analysis is to obtain possible analytical solutions of the governing
equation. The point symmetries, the optimal system of one-dimensional subalgebra, and the
associated similarity-reductions are derived using the Lie group analysis. Painlevé analysis is also
carried out to study the singularity structure of its solution. A truncated Painlevé series solution
has been derived as the general solution of the JH equatioon. Though several aspects of J-H flow
and its numerical solutions are studied, the Lie symmetry and the singularity analysis is done for
the first time.
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of integrable and non-integrable systems, Physics Reports 180 (1989), no. 3, 159–245.



Shapeev V. P. 67

Solution of a boundary value problem to ordinary differential
equations by the least squares collocation method and multipoint
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It is known that the Padé approximation (PA) has increased accuracy compared to the poly-
nomial approximation. Since the discovery of this algorithm by Henri Padé, the problems of using
PA for the approximate representation of one-dimensional functions have attracted the attention
of many mathematicians. Applications of PA to solving integral and differential equations are still
much smaller in number compared to cases where various polynomials are used for this purpose.
At the moment, for objective reasons, there are practically no publications on the application of
AP to solving the boundary value problem for ODE. In this paper, a new numerical algorithm for
solving this problem using PA in the form of [L/M] with undetermined coefficients is proposed and
implemented. As a result of multipoint approximation of a given problem, as in the case of solv-
ing the Cauchy problem for ODE, a system of nonlinear equations with respect to its coefficients
is obtained. After preliminary partial linearization, an iterative process for solving the resulting
equations is proposed, in which at each next iteration the values of part of the expressions in the
equations are taken from the previous iteration so that at the next iteration the system of linear
algebraic equations (SLAE) is solved. To limit the number of iterations, in particular, it is nec-
essary to satisfy the condition that the residual functional of all equations after substituting into
them the approximate solution obtained at the next iteration will not become less than a given
small value.

To implement the algorithm, a program was written in the language of the Wolfram Mathe-
matica system. The algorithm and program allow the setting of two conditions at any point in the
solution area, including the simultaneous setting of the value of the solution and its derivative at
one point if a solution to such a problem exists. The individual properties of the new algorithm
and the quantitative characteristics of the solutions to the problem obtained using it are studied
using the example of specific equations. In the results obtained for solving test examples and
examples taken from the literature, attention was paid to the achievable accuracy of solutions,
to the dependence of the number of iterations on the conditionality of the resulting SLAEs and
their dependence on the complexity of the behavior in the area of solving the problem of functions
that determine the type of equation and, accordingly, the solution itself. In cases of relatively
simple equations when using arithmetic on a computer with numbers in double format, the error
in solutions was close to the error in rounding numbers. In this case, the iterations converged from
the initial approximation in the form of a constant specified in the entire domain of solution of
the problem. In problems with nonlinear equations, preliminary linearization of the equation was
used.

The research was supported by the Russian Science Foundation grant No. 23-21-00499.
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We study the homogeneous Dirichlet problem for the equation

𝑢𝑡 − div (ℱ(𝑧,∇𝑢)∇𝑢) = 𝑓, 𝑧 = (𝑥, 𝑡) ∈ 𝑄𝑇 = Ω × (0, 𝑇 ),

where Ω ⊂ R𝑁 is a bounded domain with the 𝐶2 boundary, and the flux function has the form

ℱ(𝑧, 𝜉) = 𝑎(𝑧)|𝜉|𝑝(𝑧)−2 + 𝑏(𝑧)|𝜉|𝑞(𝑧)−2.

The variable exponents 𝑝, 𝑞 and the nonnegative modulating coefficients 𝑎, 𝑏 are given Lipschitz-
continuous functions. It is assumed that the exponents satisfy the inequality 2𝑁

𝑁+2 < 𝑝(𝑧), 𝑞(𝑧) and
the balance condition

|𝑝(𝑧) − 𝑞(𝑧)| < 2

𝑁 + 2
in 𝑄𝑇 .

The coefficients 𝑎, 𝑏 need not be strictly positive and may vanish on parts of the problem domain,
but it is assumed that

𝑎(𝑧) + 𝑏(𝑧) ≥ 𝛼 in 𝑄𝑇

with some constant 𝛼 > 0. The term “double phase” reflects the fact that the properties of the flux
ℱ change according to behaviour of the modulating coefficients 𝑎(𝑧) and 𝑏(𝑧). Nonlinear operators
of this type were introduced in 70-80th by J.Ball and V.V.Zhikov in the context of the nonlinear
elasticity theory.

We find conditions on the source 𝑓 and the initial data 𝑢(·, 0) that guarantee the existence of a
unique strong solution 𝑢 with 𝑢𝑡 ∈ 𝐿2(𝑄𝑇 ) and 𝑎|∇𝑢|𝑝 + 𝑏|∇𝑢|𝑞 ∈ 𝐿∞(0, 𝑇 ;𝐿1(Ω)). The solution
possesses the property of global higher integrability of the gradient,

|∇𝑢|min{𝑝(𝑧),𝑞(𝑧)}+𝑟 ∈ 𝐿1(𝑄𝑇 ) with any 𝑟 ∈
(︂

0,
4

𝑁 + 2

)︂
,

which is derived with the help of new interpolation inequalities in the variable Sobolev spaces. The
global second-order differentiability of the strong solution is proven:

𝐷𝑖

(︁√︀
ℱ(𝑧,∇𝑢)𝐷𝑗𝑢

)︁
∈ 𝐿2(𝑄𝑇 ), 𝑖, 𝑗 = 1, 2, . . . , 𝑁.

The analytical framework for the proof of existence is furnished by the theory of the Musielak-
Orlicz-Sobolev spaces. The detailed proofs were published in [1, 2].
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This work illustrates a method in fixed point theory for the existence of continuous solutions
to Dirichlet problems of the type⎧⎪⎨⎪⎩

−∆𝑢 =
𝑚∑︀
𝑖=1

𝜎𝑖𝑢
𝑞𝑖 + 𝜎0, 𝑢 > 0 in Ω,

lim
𝑥→𝑦

𝑢(𝑥) = 𝑓(𝑦) 𝑦 ∈ 𝜕∞Ω,

in the sublinear case 0 < 𝑞𝑖 < 1, where each coefficient 𝜎𝑖 are nonnegative Radon measures in a reg-
ular domain Ω ⊂ R𝑛 which possesses the positive Green function, and 𝑓 is a nonnegative continuous
function on 𝜕∞Ω. Uniqueness and pointwise estimates of such solutions are also discussed.

keywords: Continuous solution, Schauder fixed point theorem, two-sided pointwise estimates,
measure data
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There are now many analytical methods that have been used to construct exact solutions of
nonlinear partial differential equations (PDEs) or systems of nonlinear PDEs. These methods are
mainly based on first converting the original PDE or system of PDEs into a nonlinear ordinary
differential equation (ODE) or system of nonlinear ODEs via a complex traveling wave transfor-
mation and the chain rule. Next, some special techniques are applied to the ODEs in order to
derive their exact solutions and then these exact ODE solutions are transformed back into the
exact solutions of the PDEs. Some examples of the useful analytical methods that have been
employed for deriving exact solutions of the PDEs are the

(︀
𝐺′/𝐺, 1/𝐺

)︀
-expansion method, the

modified Kudryashov method, the Exp-function method, the auxiliary equation method and the
Sardar sub-equation method. With these analytical methods there is no further demand for the
normalization or discretization in the calculation process that are often required by numerical
schemes. The aim of this talk is to introduce the preliminary concepts of some of these analytical
methods that have been used to obtain exact solutions for some PDEs arising in important physics
and engineering problems. In addition, some advantages of the described methods will be clarified.



Meleshko S. V., Stepanova I. V. 71

Group Classification of Heat and Mass Transfer Equations

S.V. Meleshko1, I. V. Stepanova2

1School of Mathematics, Suranaree University of Technology, Nakhon Ratchasima,
Thailand; sergey@math.sut.ac.th

2Department of Differential Equations in Mechanics, Institute of Computational
Modelling of Siberan Branch of Russian Academy of Sciences, Krasnoyarsk, Russia;

stepiv@icm.krasn.ru

We consider nonlinear heat and mass transfer equations taking into account that coefficients
of thermal conductivity 𝜅, diffusion 𝐷 and parameters concerning to Soret and Dufour effects
(𝐷𝐹 and 𝐷𝜃) depend on the desired functions of temperature 𝑇 and concentration of the light
component in the liquid solution 𝐶. The described system has the form

𝜕𝑇

𝜕𝑡
= div

(︁
𝜅(𝑇,𝐶)∇𝑇 +𝐷𝐹 (𝑇,𝐶)∇𝐶

)︁
,

𝜕𝐶

𝜕𝑡
= div

(︁
𝐷(𝑇,𝐶)∇𝐶 +𝐷𝜃(𝑇,𝐶)∇𝑇

)︁
.

(1)

Here 𝑡 means the time, the generator ∇ is calculated with respect to three space coordinates
𝑥𝑖, 𝑖 = 1, 2, 3. It is necessary to note that class of equations (1) contain some simple equa-
tions, the group properties of which were treated earlier. For example, the group classification
of nonlinear heat transfer equation with respect to conductivity coefficient was carried out by
L. V. Ovsyannikov [1].

The structure of the basic Lie algebra 𝐿0 of class (1) is quite simple

𝐿0 =
⟨
𝜕𝑡, 𝜕𝑥𝑖 , 2𝑡𝜕𝑡 +

3∑︁
𝑖=1

𝑥𝑖𝜕𝑥𝑖 , 𝑥𝑗𝜕𝑥𝑖 − 𝑥𝑖𝜕𝑥𝑗

⟩
, 𝑖, 𝑗 = 1, 2, 3, 𝑖 ̸= 𝑗.

It contains four translation operators, one dilation operator which is not associated with the
unknown functions 𝑇 and 𝐶, and three rotation operators. All the obtained operators are natural
and are admitted by many mathematical models of continuum mechanics.

The problem of group classification of system (1) was solved with respect to variable transport
coefficients in the cases when 𝐷𝜃 ≡ 0 (see [2]) or 𝐷𝐹 ≡ 0 (see [3]). But the group properties
of system (1) where the both coefficients do not vanish are interesting not only as extracting
information on quality properties of the system but also as check of the Onsager’s reciprocity
relation [4]. The latter predicates the coefficients 𝐷𝐹 and 𝐷𝜃 should be closely related.

The present work is devoted to group classification of full class (1) with respect to four transport
coefficients. Some conclusion concerning to group properties of the equations are derived depending
on the obtained classifying equations and forms of the classified functions.
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We study solitary waves in the cylindrical Kadomtsev–Petviashvili equation designated to media
with positive dispersion (the cKP1 equation):

𝜕

𝜕𝑡

(︂
𝜕𝑢

𝜕𝑟
+

1

𝑐

𝜕𝑢

𝜕𝑡
− 𝛼

𝑐
𝑢
𝜕𝑢

𝜕𝑡
− 𝛽

2𝑐5
𝜕3𝑢

𝜕𝑡3
+

𝑢

2𝑟

)︂
=

𝑐

2𝑟2
𝜕2𝑢

𝜕𝜙2
, (1)

where 𝑢(𝑡, 𝑟, 𝜙) is a wave perturbation that depends on time 𝑡 and two spatial coordinates in the
cylindrical coordinate frame (𝑟, 𝜙), 𝑐 is the speed of long linear waves, 𝛼 and 𝛽 are the coefficient
of nonlinearity and dispersion, respectively, which depend on parameters of a particular physical
problem. Equation similar to that was derived for the first time for surface water waves in a shallow
basin, and then, for internal waves, and for plasma waves.

By means of the Darboux–Matveev transform, we derive exact solutions that describe two-
dimensional solitary waves (lumps), lump chains, and their interactions. One of the obtained
solutions describes the modulation instability of outgoing ring solitons and their disintegration
onto a number of lumps as shown in the figure. The figure shows the expansion of four lumps at
𝑡 = 6 (a) and at 𝑡 = 30 (b) that emerge in the result of modulation instability.

(a) (b)

We also present solutions describing decaying lumps and lump chains of a complex spatial
structure – ripplons. Then, we study normal and anomalous (resonant) interactions of lump
chains with each other and with ring solitons. Results obtained agree with the data of numerical
modelling.
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The Generalized Korteweg – de Vries equation (GKdV) with noise 𝑉 (𝑡) can be formally written
as:

𝑢𝑡 + (𝑓(𝑢))𝑥𝑉
′(𝑡) + 𝑢𝑥𝑥𝑥 = 0. (1)

We will be interested in the Cauchy problem for GKdV with time-dependent coefficients, which
can be conveniently interpreted as noise. By noise we mean an arbitrary continuous, possibly
non-differentiable function 𝑉 (𝑡), 𝑉 (0) = 0, or a random process 𝑉 (𝑡), 𝑉 (0) = 0, with continuous
paths. In particular, these can be a Wiener process or a fractal Brownian motion.

Let us formulate the problem. Since the solution 𝑢(𝑥, 𝑡) depends on noise, it is necessary to
look for a solution of (1) as a function 𝑢(𝑥, 𝑡) ≡ 𝑢(𝑥, 𝑡, 𝑉 (𝑡)). Using the technique of symmetric
integrals [1], equation (1) will be written in integral form:∫︁ 𝑡

0

[𝑢𝑠(𝑥, 𝑠, 𝑉 (𝑠)) + 𝑢𝑥𝑥𝑥(𝑥, 𝑠, 𝑉 (𝑠))]𝑑𝑠+

∫︁ 𝑡

0

[𝑢𝑣(𝑥, 𝑠, 𝑉 (𝑠)) + (𝑓(𝑢(𝑥, 𝑠, 𝑉 (𝑠))))𝑥] * 𝑑𝑉 (𝑠) = 0. (2)

It is shown that solving equation (2) reduces to solving the system:{︃
𝑢𝑡(𝑥, 𝑡, 𝑣)|𝑣=𝑉 (𝑡)+𝑢𝑥𝑥𝑥(𝑥, 𝑡, 𝑉 (𝑡))=0,

𝑢𝑣(𝑥, 𝑡, 𝑣)|𝑣=𝑉 (𝑡) + (𝑓(𝑢(𝑥, 𝑡, 𝑉 (𝑡))))𝑥 = 0.

Theorem. Let 𝑉 (𝑡), 𝑡 ∈ [0, 𝑇 ], 𝑉 (0) = 0, be a continuous function. Then the function

𝑢(𝑥, 𝑡, 𝑉 (𝑡)) = (−3𝑡)−
1
3

+∞∫︀
−∞

𝐴𝑖

(︂
𝑥−𝑦

(−3𝑡)
1
3

)︂
𝜙(𝑦, 𝑉 (𝑡)) 𝑑𝑦 is the solution to the equation GKdV (2)

with initial condition 𝜙(𝑥, 𝑣) = 𝑢(𝑥, 0, 𝑣), where 𝐴𝑖(𝑧) = 1
𝜋

∞∫︀
0

cos
(︁

𝑦3

3 + 𝑦𝑧
)︁
𝑑𝑦 is the function of

Airy [3].

Remark. The talk will also present KdV solutions with noise affecting the dispersion term,
the dispersion and nonlinear terms [6].
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Differential-invariant solutions are a generalization of invariant and partially invariant solutions
[1]. Each differentially-invariant solution is characterized by the sequence dimensions of orbits
𝑑0, 𝑑1, . . . of this solution in extended spaces [2], [3], [4], where 𝑑𝑗 is the dimension of the orbit of
the solution in the 𝑗-extended space.

In the works [1] and [5] described the construction algorithm optimal system of subalgebras.
Then this optimal system of subalgebras used to construct invariant and partially invariant solu-
tions.

Here we consider a similar question for differential-invariant solutions.
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We present a summary of the unified method UM for finding exact solutions to Partial Dif-
ferential Equations PDEs [1, 2]. The solutions are classified as polynomial and rational function
solutions with auxiliary functions that satisfy appropriate ordinary differential equation ODEs.
Here we applied UM to find family of traveling wave solutions TWS for Murnaghan’s model for an
isotropic elastic medium [3]. Here, attention is focused on the case when the speed of the moving
frame is equal to the wave speed. Computational are derived to show certain critical values of
the nonlinearity and double-double dispersion of the model. Also, we applied for getting TWS
of one-dimensional of nonlinear equations of extended thermodynamics for temperature and heat
flux in an infinite rigid thermal conductor [4]. The behavior of these solutions is investigated for
the temperature and the heat flux with the material properties.

Keywords: Unified Method; Traveling wave solutions; Murnaghan’s model; temperature; Heat
flux
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We have evolutionary equation systems such as following:

𝜕u

𝜕𝑡
= f

(︂
x,u,

𝜕u

𝜕x
, . . . ,

𝜕𝑘u

𝜕x𝑘

)︂
.

The above system generates a flow on the maximal integral manifolds associated with certain
completely integrable distributions 𝑃 (see[1,2]), i.e.

Now assume we have an overdetermined system of partial differential equations as following,
which can generate the distribution:

𝜕𝑞+1v

𝜕x𝜎+1𝑖
= V𝜎+1𝑖

(︂
x,v,

𝜕v

𝜕x
, . . . ,

𝜕𝑞v

𝜕x𝑞

)︂
, |𝜎| = 𝜎1 + · · · + 𝜎𝑛 = 𝑞; 𝑖 = 1, . . . 𝑛.

Let 𝑆 be a shuffling symmetry of the distribution 𝑃 [3]. There are a unique set of functions
𝜙1, . . . , 𝜙𝑚 on 𝐽𝑞 such that

𝑆 =

𝑚∑︁
𝑗=1

𝜙𝑗 𝜕

𝜕𝑣𝑗𝑜
+

∑︁
|𝜎|=1

𝑗=1,...,𝑚

𝒟𝜎
(︀
𝜙𝑗

)︀ 𝜕

𝜕𝑣𝑗𝜎
+ · · · +

∑︁
|𝜎|=𝑞

𝑗=1,...,𝑚

𝒟𝜎
(︀
𝜙𝑗

)︀ 𝜕

𝜕𝑣𝑗𝜎
.

Here 𝑜 = (0, . . . , 0) is zero multi-index, 𝒟𝜎 = 𝒟𝜎1
1 ∘ · · · ∘ 𝒟𝜎𝑛

𝑛 , and 𝒟𝑠
𝑖 is the 𝑠-th degree of the

operator

𝒟𝑖 =
𝜕

𝜕𝑥𝑖
+

∑︁
0≤|𝜎|≤𝑞
𝑗=1,...,𝑚

𝑣𝑗𝜎+1𝑖

𝜕

𝜕𝑣𝑗𝜎
+

∑︁
0≤|𝜎|=𝑞
𝑗=1,...,𝑚

𝑉 𝑗
𝜎+1𝑖

(x,v𝜎)
𝜕

𝜕𝑣𝑗𝜎
(𝑖 = 1, . . . 𝑛)

Note that the distribution 𝑃 is generated by the vector fields 𝒟1, . . . ,𝒟𝑛.
To obtain a solution to the evolutionary system, we perform shifts along the vector field 𝑆.

This vector field is determined by solving the system, and it allows us to find solutions to the
overdetermined system.

The examples of the Boussinesq equation will be used to illustrate this method{︂
𝑢𝑡 = 𝑢𝑥𝑥 + 2𝑣𝑥,
𝑣𝑡 = −𝑣𝑥𝑥 + 2𝑢𝑢𝑥 − 2𝑢𝑦.

By aboving methods a family of exact solutions of the Boussinesq equation, dependent on six
arbitrary parameters 𝛿, 𝜂, 𝐶1, . . . , 𝐶4 and one arbitrary function 𝑔(𝑦) was constructed.

Note that the method of finite-dimensional dynamics for scalar evolution equations with one
spatial variable was proposed in [4].
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We study the linear stability of a resting state for flows of incompressible viscoelastic polymeric
fluid in an infinite cylindrical channel in axisymetric perturbation class. We use structurally-
phenomenological Vinogradov-Pokrovski model as our mathematical model [1, 2].

We formulate two equations that define the spectrum of the problem. Our numerical experi-
ments show that with the growth of perturbations frequency along the channel axis there appear
eigenvalues with positive real part for the radial velocity component of the first spectral equation.
That guarantees linear Lyapunov instability of the resting state [3].

The study was carried out within the framework of the state contract of the Sobolev Institute
of Mathematics (project no. FWNF-2022-0008).
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This quasilinear combined type system describes the spatial unsteady nonisothermal motion
of a compressible fluid in a viscoelastic medium. The model equations in the absence of phase
transitions and taking into account the dependence of the medium parameters on porosity and
temperature have the form [1] – [3]:

𝜕(1−𝜑)𝜌𝑠

𝜕𝑡 + 𝑑𝑖𝑣((1 − 𝜑)𝜌𝑠�⃗�𝑠) = 0,
𝜕(𝜌𝑓𝜑)

𝜕𝑡 + 𝑑𝑖𝑣(𝜌𝑓𝜑�⃗�𝑓 ) = 0, (1)

𝜑(�⃗�𝑓 − �⃗�𝑠) = −𝐾(𝜑)

𝜇(𝜃)
(∇𝑝𝑓 + 𝜌𝑓 �⃗�), (2)

∇ · �⃗�𝑠 = −𝑎1(𝜑)𝜉1(𝜃)𝑝𝑒 − 𝑎2(𝜑)𝜉2(𝜃)(
𝜕𝑝𝑒
𝜕𝑡

+ �⃗�𝑠 · ∇𝑝𝑒), (3)

∇ · 𝜎 + 𝜌𝑡𝑜𝑡�⃗� = 0, 𝜌𝑡𝑜𝑡 = 𝜑𝜌𝑓 + (1 − 𝜑)𝜌𝑠, (4)

(𝜌𝑓𝑐𝑓𝜑+ 𝜌𝑠𝑐𝑠(1 − 𝜑))
𝜕𝜃

𝜕𝑡
+ (𝜌𝑓𝑐𝑓𝜑�⃗�𝑓 + 𝜌𝑠𝑐𝑠(1 − 𝜑)�⃗�𝑠)∇𝜃 = 𝑑𝑖𝑣(𝜆∇𝜃), (5)

𝑝𝑡𝑜𝑡 = 𝜑𝑝𝑓 + (1 − 𝜑)𝑝𝑠, 𝑝𝑒 = (1 − 𝜑)(𝑝𝑠 − 𝑝𝑓 ), (6)

where 𝜑 is porosity, �⃗�𝑓 , �⃗�𝑠 are velocities of fluid and porous skeleton respectively, 𝜌𝑓 , 𝜌𝑠 are densities
of fluid and solid phase respectively, 𝑝𝑠, 𝑝𝑓 are pressure of solid and fluid phase respectively, 𝑝𝑒 is
the effective dynamic pressure, 𝑝𝑡𝑜𝑡 is the total pressure, 𝜌𝑡𝑜𝑡 is density of the two-phase medium,
𝜎 is the total stress tensor, 𝐾(𝜑), 𝜇(𝜃) are the permeability and the fluid dynamic viscosity, 𝜃 is the
temperature of the medium (the same for each phases), 𝑐𝑠 and 𝑐𝑓 are heat capacities for at constant
volume of phases, 𝑎1(𝜑), 𝑎2(𝜑), 𝜉1(𝜃), 𝜉2(𝜃) are parameters of poroelastic medium, (𝑥1, 𝑥2, 𝑥3, 𝑡) are
Eulerian coordinates. The thermal conductivity coefficient of the medium 𝜆(𝜑) is taken in the
form 𝜆(𝜑) = 𝜆𝑓𝜑+ 𝜆𝑠(1 − 𝜑), where 𝜆𝑓 , 𝜆𝑠 are the thermal conductivity of liquid and solid phase
(averaged thermal conductivity).

The study was supported by the Russian Science Foundation grant No. 23-71-10045,
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We describe the work of [1], [2] and [3] on three dimensional structures of solar magnetostatic
atmospheres, in which the J × B force on the plasma is balanced by the pressure gradient force
and by the gravitational force. We study the particular model which assumes planar Cartesian
geometry, in which the gravitational force is along the 𝑧-axis. The vertical current along the
𝑧-axis: 𝐽𝑧 = (∇ × B)𝑧/𝜇0 is set equal to zero. From the conditions that the total pressure
𝑝+𝐵2/(2𝜇0) should have continuous second order spatial partial derivatives one obtains integrals of
the equations describing the equilibrium. The system of force equations is supplemented by Gauss’s
law ∇·B = 0. Gauss’s law reduces to a second order, elliptic partial differential equation involving
two scalar potentials 𝜑(𝑥, 𝑦, 𝑧) and 𝜓(𝑧, 𝜕𝜑/𝜕𝑧). We provide a Lie symmetry group analysis (e.g.
[5],[6]) of the elliptic partial differential equation for 𝜑 and 𝜓 for the case of isothermal atmospheric
structures that are periodic in 𝑥 and 𝑦. We also discuss analogous structures for solutions involving
spherical polar coordinates (𝑟, 𝜃, 𝜑) in which the gravitational force is radially downward. More
general magnetostatic atmospheres can be obtained by using numerical methods and including
centrifugal forces for rotating atmospheres (e.g. [4]). We restrict our attention to analytical
solutions.
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This research explores the advancement and deeper understanding of fractional differential
equations, which are key in modelling and interpreting complex physical phenomena, particularly
in the realm of traffic flow, beyond the scope of standard diffusion models. The study focuses on
refining these equations for enhanced applicability, assimilating them with real-world data, and
leading their innovative use in burgeoning technological areas. Through these efforts, the research
aims to significantly contribute to scientific and technological progress, offering novel insights and
practical solutions in traffic dynamics and broader physical systems.
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In this paper, Lie symmetry analysis method is applied to one type of the (2+1)-dimensional
time fractional parabolic equations, which has extensive applications in physics and engineering.
All Lie symmetries and the corresponding conserved vectors for the equation are obtained. The
one-dimensional optimal system is utilized to reduce the aimed equation with Riemann-Liouville
fractional derivative to (1+1)-dimensional fractional partial differential equation with Erdélyi-
Kober fractional derivative. Some exact solutions are constructed.

The authors gratefully acknowledge financial support by the State Key Program of National
Natural Science Foundation of China (72031009).
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